• Previous Article
    Comparison between Borel-Padé summation and factorial series, as time integration methods
  • DCDS-S Home
  • This Issue
  • Next Article
    Can the 'stick-slip' phenomenon be explained by a bifurcation in the steady sliding frictional contact problem?
April  2016, 9(2): 383-392. doi: 10.3934/dcdss.2016002

Parametric nonlinear PDEs with multiple solutions: A PGD approach

1. 

P' Institute, UPR CNRS - ISAE-ENSMA, 1 avenue Clément Ader, BP 40109, F-86961 Futuroscope Chasseneuil Cedex, France

2. 

GeM Institute, UMR CNRS - Ecole Centrale de Nantes, 1 rue de la Noë, BP 30179, F-44321 Nantes cedex 3, France, France

Received  March 2015 Revised  October 2015 Published  March 2016

This paper presents some insights into the determination, using the Proper Generalized Decomposition, of multiple solutions of nonlinear parametric partial differential equations. Although the Proper Generalized Decomposition (PGD) is well suited for computing the solution of, possibly nonlinear, parametric problems that vary smoothly with a physical parameter, no work has been achieved for the case of problems that exhibit multiple solutions for some values of a parameter. For two representative cases, we show how an appropriate parametrization, combined to a nonlinear solution procedure can be devised to describe and compute the multiple solutions of a PDE.
Citation: Marianne Beringhier, Adrien Leygue, Francisco Chinesta. Parametric nonlinear PDEs with multiple solutions: A PGD approach. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 383-392. doi: 10.3934/dcdss.2016002
References:
[1]

A. Ammar, M. Normandin, F. Daim, D. Gonzalez, E. Cueto and F. Chinesta, Non incremental strategies based on separated representations: Applications in computational rheology,, Communications in Mathematical Sciences, 8 (2010), 671. doi: 10.4310/CMS.2010.v8.n3.a4. Google Scholar

[2]

A. Ammar, F. Chinesta, P. Diez and A. Huerta, An error estimator for separated representations of highly multidimensional models,, Computer Methods in Applied Mechanics and Engineering, 199 (2010), 1872. doi: 10.1016/j.cma.2010.02.012. Google Scholar

[3]

A. Ammar, A. Huerta, F. Chinesta, E. Cueto and A. Leygue, Parametric solutions involving geometry: A step towards efficient shape optimization,, Computer Methods in Applied Mechanics and Engineering, 268 (2014), 178. doi: 10.1016/j.cma.2013.09.003. Google Scholar

[4]

S. Baguet and B. Cochelin, On the behaviour of the ANM continuation in presence of bifurcations,, Communications in Numerical Methods in Engineering, 19 (2003), 459. doi: 10.1002/cnm.605. Google Scholar

[5]

E. H. Boutyour, H. Zahrouni, M. Potier-Ferry and M. Boudi, Bifurcation points and bifurcated branches by an asymptotic numerical method and Pade approximants,, International Journal for Numerical Methods in Engineering, 60 (2004), 1987. doi: 10.1002/nme.1033. Google Scholar

[6]

F. Chinesta, A. Leygue, F. Bordeu, J. V. Aguado, E. Cueto, D. Gonzalez, I. Alfaro, A. Ammar and A. Huerta, PGD-based computational vademecum for efficient design, optimization and control,, Archives of Computational Methods in Engineering, 20 (2013), 31. doi: 10.1007/s11831-013-9080-x. Google Scholar

[7]

F. Chinesta, R. Keunings and A. Leygue, The Proper Generalized Decomposition for advanced numerical simulations. A primer,, Springerbriefs, (2014). doi: 10.1007/978-3-319-02865-1. Google Scholar

[8]

B. Cochelin, N. Damil and M. Potier-Ferry, Asymptotic Numerical Methods and Pade approximants for nonlinear elastic structures,, International Journal for Numerical Methods in Engineering, 37 (1994), 1187. doi: 10.1002/nme.1620370706. Google Scholar

[9]

C. Ghnatios, F. Chinesta, E. Cueto, A. Leygue, A. Poitou, P. Breitkopf and P. Villon, Methodological approach to efficient modelling and optimization of thermal processes taking place in die: application to pultrusion,, Composites Part A, 42 (2011), 1169. doi: 10.1016/j.compositesa.2011.05.001. Google Scholar

[10]

D. Gonzalez, A. Ammar, F. Chinesta and E. Cueto, Recent advances on the use of separated representations,, International Journal for Numerical Methods in Engineering, 81 (2010), 637. doi: 10.1002/nme.2710. Google Scholar

[11]

H. Herrero, Y. Maday and F. Pla, RB (Reduced Basis) for RB (Rayleigh-Benard),, Computer Methods in Applied Mechanics and Engineering, 261/262 (2013), 132. doi: 10.1016/j.cma.2013.02.018. Google Scholar

[12]

P. Ladeveze, Nonlinear Computational Structural Mechanics,, Springer, (1999). doi: 10.1007/978-1-4612-1432-8. Google Scholar

[13]

A. Leygue, F. Chinesta, M. Beringhier, T. L. Nguyen, J. C. Grandidier, F. Pasavento and B. Schrefler, Towards a framework for non-linear thermal models in shell domains,, International Journal of Numerical Methods for Heat and Fluid Flow, 23 (2013), 53. doi: 10.1108/09615531311289105. Google Scholar

[14]

E. Pruliere, F. Chinesta and A. Ammar, On the deterministic solution of multidimensional parametric models using the proper generalized decomposition,, Mathematics and Computers in Simulation, 81 (2010), 791. doi: 10.1016/j.matcom.2010.07.015. Google Scholar

[15]

J. Smoller, Shock Waves and Reaction Diffusion Equations,, Springer-Verlag, (1994). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[16]

F. Terragni and J. M. Vega, On the use of POD-based ROMs to analyze bifurcations in some dissipative systems,, Physica D, 241 (2012), 1393. doi: 10.1016/j.physd.2012.04.009. Google Scholar

[17]

P. Vanucci, B. Cochelin, N. Damil and M. Potier-Ferry, An asymptotic-numerical method to compute bifurcating branches,, International Journal for Numerical Methods in Engineering, 41 (1998), 1365. doi: 10.1002/(SICI)1097-0207(19980430)41:8<1365::AID-NME332>3.0.CO;2-Y. Google Scholar

[18]

M. Vitse, D. Neron and P. A. Boucard, Virtual charts of solutions for parametrized nonlinear equations,, Computational Mechanics, 54 (2014), 1529. doi: 10.1007/s00466-014-1073-6. Google Scholar

show all references

References:
[1]

A. Ammar, M. Normandin, F. Daim, D. Gonzalez, E. Cueto and F. Chinesta, Non incremental strategies based on separated representations: Applications in computational rheology,, Communications in Mathematical Sciences, 8 (2010), 671. doi: 10.4310/CMS.2010.v8.n3.a4. Google Scholar

[2]

A. Ammar, F. Chinesta, P. Diez and A. Huerta, An error estimator for separated representations of highly multidimensional models,, Computer Methods in Applied Mechanics and Engineering, 199 (2010), 1872. doi: 10.1016/j.cma.2010.02.012. Google Scholar

[3]

A. Ammar, A. Huerta, F. Chinesta, E. Cueto and A. Leygue, Parametric solutions involving geometry: A step towards efficient shape optimization,, Computer Methods in Applied Mechanics and Engineering, 268 (2014), 178. doi: 10.1016/j.cma.2013.09.003. Google Scholar

[4]

S. Baguet and B. Cochelin, On the behaviour of the ANM continuation in presence of bifurcations,, Communications in Numerical Methods in Engineering, 19 (2003), 459. doi: 10.1002/cnm.605. Google Scholar

[5]

E. H. Boutyour, H. Zahrouni, M. Potier-Ferry and M. Boudi, Bifurcation points and bifurcated branches by an asymptotic numerical method and Pade approximants,, International Journal for Numerical Methods in Engineering, 60 (2004), 1987. doi: 10.1002/nme.1033. Google Scholar

[6]

F. Chinesta, A. Leygue, F. Bordeu, J. V. Aguado, E. Cueto, D. Gonzalez, I. Alfaro, A. Ammar and A. Huerta, PGD-based computational vademecum for efficient design, optimization and control,, Archives of Computational Methods in Engineering, 20 (2013), 31. doi: 10.1007/s11831-013-9080-x. Google Scholar

[7]

F. Chinesta, R. Keunings and A. Leygue, The Proper Generalized Decomposition for advanced numerical simulations. A primer,, Springerbriefs, (2014). doi: 10.1007/978-3-319-02865-1. Google Scholar

[8]

B. Cochelin, N. Damil and M. Potier-Ferry, Asymptotic Numerical Methods and Pade approximants for nonlinear elastic structures,, International Journal for Numerical Methods in Engineering, 37 (1994), 1187. doi: 10.1002/nme.1620370706. Google Scholar

[9]

C. Ghnatios, F. Chinesta, E. Cueto, A. Leygue, A. Poitou, P. Breitkopf and P. Villon, Methodological approach to efficient modelling and optimization of thermal processes taking place in die: application to pultrusion,, Composites Part A, 42 (2011), 1169. doi: 10.1016/j.compositesa.2011.05.001. Google Scholar

[10]

D. Gonzalez, A. Ammar, F. Chinesta and E. Cueto, Recent advances on the use of separated representations,, International Journal for Numerical Methods in Engineering, 81 (2010), 637. doi: 10.1002/nme.2710. Google Scholar

[11]

H. Herrero, Y. Maday and F. Pla, RB (Reduced Basis) for RB (Rayleigh-Benard),, Computer Methods in Applied Mechanics and Engineering, 261/262 (2013), 132. doi: 10.1016/j.cma.2013.02.018. Google Scholar

[12]

P. Ladeveze, Nonlinear Computational Structural Mechanics,, Springer, (1999). doi: 10.1007/978-1-4612-1432-8. Google Scholar

[13]

A. Leygue, F. Chinesta, M. Beringhier, T. L. Nguyen, J. C. Grandidier, F. Pasavento and B. Schrefler, Towards a framework for non-linear thermal models in shell domains,, International Journal of Numerical Methods for Heat and Fluid Flow, 23 (2013), 53. doi: 10.1108/09615531311289105. Google Scholar

[14]

E. Pruliere, F. Chinesta and A. Ammar, On the deterministic solution of multidimensional parametric models using the proper generalized decomposition,, Mathematics and Computers in Simulation, 81 (2010), 791. doi: 10.1016/j.matcom.2010.07.015. Google Scholar

[15]

J. Smoller, Shock Waves and Reaction Diffusion Equations,, Springer-Verlag, (1994). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[16]

F. Terragni and J. M. Vega, On the use of POD-based ROMs to analyze bifurcations in some dissipative systems,, Physica D, 241 (2012), 1393. doi: 10.1016/j.physd.2012.04.009. Google Scholar

[17]

P. Vanucci, B. Cochelin, N. Damil and M. Potier-Ferry, An asymptotic-numerical method to compute bifurcating branches,, International Journal for Numerical Methods in Engineering, 41 (1998), 1365. doi: 10.1002/(SICI)1097-0207(19980430)41:8<1365::AID-NME332>3.0.CO;2-Y. Google Scholar

[18]

M. Vitse, D. Neron and P. A. Boucard, Virtual charts of solutions for parametrized nonlinear equations,, Computational Mechanics, 54 (2014), 1529. doi: 10.1007/s00466-014-1073-6. Google Scholar

[1]

T. Gilbert, J. R. Dorfman. On the parametric dependences of a class of non-linear singular maps. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 391-406. doi: 10.3934/dcdsb.2004.4.391

[2]

Bei Hu, Lishang Jiang, Jin Liang, Wei Wei. A fully non-linear PDE problem from pricing CDS with counterparty risk. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2001-2016. doi: 10.3934/dcdsb.2012.17.2001

[3]

Kurt Falk, Marc Kesseböhmer, Tobias Henrik Oertel-Jäger, Jens D. M. Rademacher, Tony Samuel. Preface: Diffusion on fractals and non-linear dynamics. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : ⅰ-ⅳ. doi: 10.3934/dcdss.201702i

[4]

Dmitry Dolgopyat. Bouncing balls in non-linear potentials. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 165-182. doi: 10.3934/dcds.2008.22.165

[5]

Dorin Ervin Dutkay and Palle E. T. Jorgensen. Wavelet constructions in non-linear dynamics. Electronic Research Announcements, 2005, 11: 21-33.

[6]

Armin Lechleiter. Explicit characterization of the support of non-linear inclusions. Inverse Problems & Imaging, 2011, 5 (3) : 675-694. doi: 10.3934/ipi.2011.5.675

[7]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[8]

Feng-Yu Wang. Exponential convergence of non-linear monotone SPDEs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5239-5253. doi: 10.3934/dcds.2015.35.5239

[9]

Paolo Buttà, Franco Flandoli, Michela Ottobre, Boguslaw Zegarlinski. A non-linear kinetic model of self-propelled particles with multiple equilibria. Kinetic & Related Models, 2019, 12 (4) : 791-827. doi: 10.3934/krm.2019031

[10]

Tommi Brander, Joonas Ilmavirta, Manas Kar. Superconductive and insulating inclusions for linear and non-linear conductivity equations. Inverse Problems & Imaging, 2018, 12 (1) : 91-123. doi: 10.3934/ipi.2018004

[11]

Pablo Ochoa. Approximation schemes for non-linear second order equations on the Heisenberg group. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1841-1863. doi: 10.3934/cpaa.2015.14.1841

[12]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[13]

Eugenio Aulisa, Akif Ibragimov, Emine Yasemen Kaya-Cekin. Stability analysis of non-linear plates coupled with Darcy flows. Evolution Equations & Control Theory, 2013, 2 (2) : 193-232. doi: 10.3934/eect.2013.2.193

[14]

Faustino Sánchez-Garduño, Philip K. Maini, Judith Pérez-Velázquez. A non-linear degenerate equation for direct aggregation and traveling wave dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 455-487. doi: 10.3934/dcdsb.2010.13.455

[15]

José M. Amigó, Isabelle Catto, Ángel Giménez, José Valero. Attractors for a non-linear parabolic equation modelling suspension flows. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 205-231. doi: 10.3934/dcdsb.2009.11.205

[16]

Christoph Walker. Age-dependent equations with non-linear diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 691-712. doi: 10.3934/dcds.2010.26.691

[17]

Olusola Kolebaje, Ebenezer Bonyah, Lateef Mustapha. The first integral method for two fractional non-linear biological models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 487-502. doi: 10.3934/dcdss.2019032

[18]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. FLUID STRUCTURE INTERACTION PROBLEM WITH CHANGING THICKNESS NON-LINEAR BEAM Fluid structure interaction problem with changing thickness non-linear beam. Conference Publications, 2011, 2011 (Special) : 813-823. doi: 10.3934/proc.2011.2011.813

[19]

David Gómez-Ullate, Niky Kamran, Robert Milson. Structure theorems for linear and non-linear differential operators admitting invariant polynomial subspaces. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 85-106. doi: 10.3934/dcds.2007.18.85

[20]

Simona Fornaro, Ugo Gianazza. Local properties of non-negative solutions to some doubly non-linear degenerate parabolic equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 481-492. doi: 10.3934/dcds.2010.26.481

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

[Back to Top]