Citation: |
[1] |
V. Adukov and O. Ibryaeva, A new algorithm for computing padé approximants, arXiv:1112.5694. |
[2] |
G. Baker, J. Gammel and J. Wills, An investigation of the applicability of the Padé approximant method, Journal of Mathematical Analysis and Applications, 2 (1961), 405-418.doi: 10.1016/0022-247X(61)90019-1. |
[3] |
B. Beckermann and A. Ana Matos, Algebraic properties of robust Padé approximants, Journal of Approximation Theory, 190 (2015), 91-115, arXiv:1310.2438.doi: 10.1016/j.jat.2014.05.018. |
[4] |
J. Boyd, Exponentially convergent Fourier-Chebshev quadrature schemes on bounded and infinite intervals, Journal of Scientific Computing, 2 (1987), 99-109.doi: 10.1007/BF01061480. |
[5] |
C. Brezinski, Rationnal approximation to formal power serie, Journal of Approximation Theory, 25 (1979), 295-317.doi: 10.1016/0021-9045(79)90019-4. |
[6] |
C. Brezinski and J. Van Iseghem, Padé approximations, in Handbook of Numerical Analysis (eds. P. G. Ciarlet and J. L. Lions), Elsevier, 3 (1994), 47-222,doi: 10.1016/S1570-8659(05)80016-X. |
[7] |
A. Bultheel, Recursive algorithms for nonnormal Pade tables, SIAM Journal on Applied Mathematics, 39 (1980), 106-118.doi: 10.1137/0139009. |
[8] |
O. Costin, G. Luo and S. Tanveer, Divergent expansion, Borel summability and three-dimensional Navier-Stokes equation, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366 (2008), 2775-2788.doi: 10.1098/rsta.2008.0052. |
[9] |
P. J. Davis and P. Rabinowitz, Ignoring the singularity in approximate integration, Journal of the Society for Industrial and Applied Mathematics: Series B, Numerical Analysis, 2 (1965), 367-383.doi: 10.1137/0702029. |
[10] |
A. Deeb, A. Hamdouni, E. Liberge and D. Razafindralandy, Borel-Laplace summation method used as time integration scheme, ESAIM: Procedings and Surveys, 45 (2014), 318-327.doi: 10.1051/proc/201445033. |
[11] |
E. Delabaere and J.-M. Rasoamanana, Sommation effective d'une somme de Borel par séries de factorielles, Annales de l'institut Fourier, 57 (2007), 421-456.doi: 10.5802/aif.2263. |
[12] |
W. Gautschi, Gauss-type quadrature rules for rational functions, Numerical Integration IV, the series ISNM International Series of Numerical Mathematics, 112 (1993), 111-130, arXiv:math/9307223.doi: 10.1007/978-3-0348-6338-4_9. |
[13] |
W. Gautschi, The use of rational functions in numerical quadrature, Journal of Computational and Applied Mathematics, 133 (2001), 111-126.doi: 10.1016/S0377-0427(00)00637-3. |
[14] |
W. Gautschi, Quadrature formulae on half-infinite intervals, BIT Numerical Mathematics, 31 (1991), 438-446.doi: 10.1007/BF01933261. |
[15] |
J. Gilewicz, Approximants de Padé, vol. 667 of Lecture Notes in Mathematics, Springer-Verlag, 1978. |
[16] |
J. Gilewicz and Y. Kryakin, Froissart doublets in Padé approximation in the case of polynomial noise, Journal of Computational and Applied Mathematics, 153 (2003), 235-242.doi: 10.1016/S0377-0427(02)00674-X. |
[17] |
J. Gilewicz and M. Pindor, Padé approximants and noise: A case of geometric series, Journal of Computational and Applied Mathematics, 87 (1997), 199-214.doi: 10.1016/S0377-0427(97)00185-4. |
[18] |
P. Gonnet, S. Güttel and L. Trefethen, Robust Padé approximation via SVD, SIAM Review, 55 (2013), 101-117.doi: 10.1137/110853236. |
[19] |
N. Hall, Interview of sir michael berry by nina hall: Caustics, catastrophes and quantum chaos, Nexus News, pp. 4-5. |
[20] |
M. Hirsch, S. Smale and R. Devaney, Differential Equations, Dynamical Systems, and An Introduction to Chaos, Elsevier, 2013.doi: 10.1016/B978-0-12-382010-5.00001-4. |
[21] |
H. Kleinert and V. Schulte-Frohlinde, Critical Properties of $\Phi^4$-Theories, World Scientific Publishing Co., Inc., River Edge, NJ, 2001.doi: 10.1142/9789812799944. |
[22] |
V. Kowalenko, The Stokes Phenomenon, Borel Summation and Mellin-Barnes Regularisation, Bentham, 2009.doi: 10.2174/97816080501091090101. |
[23] |
R. Kumar and M. K. Jain, Quadrature formulas for semi-infinite integrals, Mathematics of Computation, 28 (1974), 499-503.doi: 10.1090/S0025-5718-1974-0343549-5. |
[24] |
D. Lubinsky, Reflections on the Baker-Gammel-Wills (Padé), in Analytic Number Theory, Approximation Theory, and Special Functions (eds. G. V. Milovanović and M. T. Rassias), Springer New York, 2014, 561-571. |
[25] |
D. S. Lubinsky and P. Rabinowitz, Rates of convergence of Gaussian quadrature for singular integrands, Mathematics of Computation, 43 (1984), 219-242.doi: 10.1090/S0025-5718-1984-0744932-2. |
[26] |
D. Lutz, M. Miyake and R. Schäfke, On the Borel summability of divergent solutions of the heat equation, Nagoya Mathematical Journal, 154 (1999), 1-29. |
[27] |
G. Lysik, Borel summable solutions of the Burgers equation, Annales Polonici Mathematici, 95 (2009), 187-197.doi: 10.4064/ap95-2-9. |
[28] |
G. Lysik and S. Michalik, Formal solutions of semilinear heat equations, Journal of Mathematical Analysis and Applications, 341 (2008), 372-385.doi: 10.1016/j.jmaa.2007.10.005. |
[29] |
W. Mascarenhas, Robust Padé approximants can diverge, arXiv:1309.5753. |
[30] |
N. Nielsen, Recherches sur les séries de factorielles, Annales Scientifiques de l'E.N.S. 3è série, 19 (1902), 409-453. |
[31] |
N. Nielsen, Les séries de factorielles et les opérations fondamentales, Mathematische Annalen, 59 (1904), 355-376.doi: 10.1007/BF01445147. |
[32] |
N. Nielsen, Sur les séries de factorielles et la fonction gamma (extrait d'une lettre adressée à M.-N. de Sonin à Saint-Pétersbourg), Annales Scientifiques de l'E.N.S. 3è série, 23 (1906), 145-168. |
[33] |
N. Nörlund, Vorlesungen Über Differenzenrechnung, Srpinger Verlag, 1924. |
[34] |
N. Nörlund, Leçons Sur Les Séries D'interpolation, Gauthier-Villard et Cie, 1926. |
[35] |
S. Pincherle, Sulle serie di fattoriali. nota II, Atti della Reale Accademia dei Lincei, Rendiconti della Classe di Scienze Fisiche, Matematiche e Naturali. Series 5, 11 (1902), 417-426. |
[36] |
J.-P. Ramis, Séries divergentes et théories asymptotiques, in Journées X-UPS 1991, 1991, 7-67. |
[37] |
J.-P. Ramis, Les développements asymptotiques après poincaré: Continuité et... divergences, Gazettes des Mathématiciens. |
[38] |
D. Razafindralandy and A. Hamdouni, Time integration algorithm based on divergent series resummation, for ordinary and partial differential equations, Journal of Computational Physics, 236 (2013), 56-73.doi: 10.1016/j.jcp.2012.10.022. |
[39] |
H. Stahl, Conjectures around the Baker-Gammel-Wills conjecture, Constructive Approximation, 13 (1997), 287-292,doi: 10.1007/s003659900044. |
[40] |
H. Stahl, Spurious poles in Padé approximation, Journal of Computational and Applied Mathematics, 99 (1998), 511-527.doi: 10.1016/S0377-0427(98)00180-0. |
[41] |
J. Thomann, Resommation des séries formelles. Solutions d'équations différentielles linéaires ordinaires du second ordre dans le champ complexe au voisinage de singularités irrégulières, Numerische Mathematik, 58 (1990), 503-535.doi: 10.1007/BF01385638. |
[42] |
J. Thomann, Procédés formels et numériques de sommation de séries solutions d'équations différentielles, in Journées X-UPS 1991, Séries divergentes et procédés de resommation (ed. C. de mathématiques), 1991, 101-114. |
[43] |
J. Thomann, Formal and Numerical Summation of Formal Power Series Solutions of ODE's, Technical report, CIRM Luminy, 2000. |
[44] |
F. Thomlinson, Generalized factorial series, Transactions of the American Mathematical Society, 31. |
[45] |
M. Thomson, The Calculus Of Finite Differences, Macmillan and Company, 1933. |
[46] |
J. van Deun, A. Bultheel and P. González Vera, On computing rational Gauss-Chebyshev quadrature formulas, Mathematics of Computation, 75 (2006), 307-326.doi: 10.1090/S0025-5718-05-01774-6. |
[47] |
G. N. Watson, The transformation of an asymptotic series into a convergent series of inverse factorials, Rendiconti del Circolo Matematico di Palermo, 34 (1912), 41-88. |
[48] |
E. Weniger, Summation of divergent power series by means of factorial series, Applied Numerical Mathematics, 60 (2010), 1429-1441.doi: 10.1016/j.apnum.2010.04.003. |