\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Comparison between Borel-Padé summation and factorial series, as time integration methods

Abstract / Introduction Related Papers Cited by
  • We compare the performance of two algorithms of computing the Borel sum of a time power series. The first one uses Padé approximants in Borel space, followed by a Laplace transform. The second is based on factorial series. These algorithms are incorporated in a numerical scheme for time integration of differential equations.
    Mathematics Subject Classification: Primary: 40G10; Secondary: 37M05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. Adukov and O. Ibryaeva, A new algorithm for computing padé approximants, arXiv:1112.5694.

    [2]

    G. Baker, J. Gammel and J. Wills, An investigation of the applicability of the Padé approximant method, Journal of Mathematical Analysis and Applications, 2 (1961), 405-418.doi: 10.1016/0022-247X(61)90019-1.

    [3]

    B. Beckermann and A. Ana Matos, Algebraic properties of robust Padé approximants, Journal of Approximation Theory, 190 (2015), 91-115, arXiv:1310.2438.doi: 10.1016/j.jat.2014.05.018.

    [4]

    J. Boyd, Exponentially convergent Fourier-Chebshev quadrature schemes on bounded and infinite intervals, Journal of Scientific Computing, 2 (1987), 99-109.doi: 10.1007/BF01061480.

    [5]

    C. Brezinski, Rationnal approximation to formal power serie, Journal of Approximation Theory, 25 (1979), 295-317.doi: 10.1016/0021-9045(79)90019-4.

    [6]

    C. Brezinski and J. Van Iseghem, Padé approximations, in Handbook of Numerical Analysis (eds. P. G. Ciarlet and J. L. Lions), Elsevier, 3 (1994), 47-222,doi: 10.1016/S1570-8659(05)80016-X.

    [7]

    A. Bultheel, Recursive algorithms for nonnormal Pade tables, SIAM Journal on Applied Mathematics, 39 (1980), 106-118.doi: 10.1137/0139009.

    [8]

    O. Costin, G. Luo and S. Tanveer, Divergent expansion, Borel summability and three-dimensional Navier-Stokes equation, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366 (2008), 2775-2788.doi: 10.1098/rsta.2008.0052.

    [9]

    P. J. Davis and P. Rabinowitz, Ignoring the singularity in approximate integration, Journal of the Society for Industrial and Applied Mathematics: Series B, Numerical Analysis, 2 (1965), 367-383.doi: 10.1137/0702029.

    [10]

    A. Deeb, A. Hamdouni, E. Liberge and D. Razafindralandy, Borel-Laplace summation method used as time integration scheme, ESAIM: Procedings and Surveys, 45 (2014), 318-327.doi: 10.1051/proc/201445033.

    [11]

    E. Delabaere and J.-M. Rasoamanana, Sommation effective d'une somme de Borel par séries de factorielles, Annales de l'institut Fourier, 57 (2007), 421-456.doi: 10.5802/aif.2263.

    [12]

    W. Gautschi, Gauss-type quadrature rules for rational functions, Numerical Integration IV, the series ISNM International Series of Numerical Mathematics, 112 (1993), 111-130, arXiv:math/9307223.doi: 10.1007/978-3-0348-6338-4_9.

    [13]

    W. Gautschi, The use of rational functions in numerical quadrature, Journal of Computational and Applied Mathematics, 133 (2001), 111-126.doi: 10.1016/S0377-0427(00)00637-3.

    [14]

    W. Gautschi, Quadrature formulae on half-infinite intervals, BIT Numerical Mathematics, 31 (1991), 438-446.doi: 10.1007/BF01933261.

    [15]

    J. Gilewicz, Approximants de Padé, vol. 667 of Lecture Notes in Mathematics, Springer-Verlag, 1978.

    [16]

    J. Gilewicz and Y. Kryakin, Froissart doublets in Padé approximation in the case of polynomial noise, Journal of Computational and Applied Mathematics, 153 (2003), 235-242.doi: 10.1016/S0377-0427(02)00674-X.

    [17]

    J. Gilewicz and M. Pindor, Padé approximants and noise: A case of geometric series, Journal of Computational and Applied Mathematics, 87 (1997), 199-214.doi: 10.1016/S0377-0427(97)00185-4.

    [18]

    P. Gonnet, S. Güttel and L. Trefethen, Robust Padé approximation via SVD, SIAM Review, 55 (2013), 101-117.doi: 10.1137/110853236.

    [19]

    N. Hall, Interview of sir michael berry by nina hall: Caustics, catastrophes and quantum chaos, Nexus News, pp. 4-5.

    [20]

    M. Hirsch, S. Smale and R. Devaney, Differential Equations, Dynamical Systems, and An Introduction to Chaos, Elsevier, 2013.doi: 10.1016/B978-0-12-382010-5.00001-4.

    [21]

    H. Kleinert and V. Schulte-Frohlinde, Critical Properties of $\Phi^4$-Theories, World Scientific Publishing Co., Inc., River Edge, NJ, 2001.doi: 10.1142/9789812799944.

    [22]

    V. Kowalenko, The Stokes Phenomenon, Borel Summation and Mellin-Barnes Regularisation, Bentham, 2009.doi: 10.2174/97816080501091090101.

    [23]

    R. Kumar and M. K. Jain, Quadrature formulas for semi-infinite integrals, Mathematics of Computation, 28 (1974), 499-503.doi: 10.1090/S0025-5718-1974-0343549-5.

    [24]

    D. Lubinsky, Reflections on the Baker-Gammel-Wills (Padé), in Analytic Number Theory, Approximation Theory, and Special Functions (eds. G. V. Milovanović and M. T. Rassias), Springer New York, 2014, 561-571.

    [25]

    D. S. Lubinsky and P. Rabinowitz, Rates of convergence of Gaussian quadrature for singular integrands, Mathematics of Computation, 43 (1984), 219-242.doi: 10.1090/S0025-5718-1984-0744932-2.

    [26]

    D. Lutz, M. Miyake and R. Schäfke, On the Borel summability of divergent solutions of the heat equation, Nagoya Mathematical Journal, 154 (1999), 1-29.

    [27]

    G. Lysik, Borel summable solutions of the Burgers equation, Annales Polonici Mathematici, 95 (2009), 187-197.doi: 10.4064/ap95-2-9.

    [28]

    G. Lysik and S. Michalik, Formal solutions of semilinear heat equations, Journal of Mathematical Analysis and Applications, 341 (2008), 372-385.doi: 10.1016/j.jmaa.2007.10.005.

    [29]

    W. Mascarenhas, Robust Padé approximants can diverge, arXiv:1309.5753.

    [30]

    N. Nielsen, Recherches sur les séries de factorielles, Annales Scientifiques de l'E.N.S. 3è série, 19 (1902), 409-453.

    [31]

    N. Nielsen, Les séries de factorielles et les opérations fondamentales, Mathematische Annalen, 59 (1904), 355-376.doi: 10.1007/BF01445147.

    [32]

    N. Nielsen, Sur les séries de factorielles et la fonction gamma (extrait d'une lettre adressée à M.-N. de Sonin à Saint-Pétersbourg), Annales Scientifiques de l'E.N.S. 3è série, 23 (1906), 145-168.

    [33]

    N. Nörlund, Vorlesungen Über Differenzenrechnung, Srpinger Verlag, 1924.

    [34]

    N. Nörlund, Leçons Sur Les Séries D'interpolation, Gauthier-Villard et Cie, 1926.

    [35]

    S. Pincherle, Sulle serie di fattoriali. nota II, Atti della Reale Accademia dei Lincei, Rendiconti della Classe di Scienze Fisiche, Matematiche e Naturali. Series 5, 11 (1902), 417-426.

    [36]

    J.-P. Ramis, Séries divergentes et théories asymptotiques, in Journées X-UPS 1991, 1991, 7-67.

    [37]

    J.-P. Ramis, Les développements asymptotiques après poincaré: Continuité et... divergences, Gazettes des Mathématiciens.

    [38]

    D. Razafindralandy and A. Hamdouni, Time integration algorithm based on divergent series resummation, for ordinary and partial differential equations, Journal of Computational Physics, 236 (2013), 56-73.doi: 10.1016/j.jcp.2012.10.022.

    [39]

    H. Stahl, Conjectures around the Baker-Gammel-Wills conjecture, Constructive Approximation, 13 (1997), 287-292,doi: 10.1007/s003659900044.

    [40]

    H. Stahl, Spurious poles in Padé approximation, Journal of Computational and Applied Mathematics, 99 (1998), 511-527.doi: 10.1016/S0377-0427(98)00180-0.

    [41]

    J. Thomann, Resommation des séries formelles. Solutions d'équations différentielles linéaires ordinaires du second ordre dans le champ complexe au voisinage de singularités irrégulières, Numerische Mathematik, 58 (1990), 503-535.doi: 10.1007/BF01385638.

    [42]

    J. Thomann, Procédés formels et numériques de sommation de séries solutions d'équations différentielles, in Journées X-UPS 1991, Séries divergentes et procédés de resommation (ed. C. de mathématiques), 1991, 101-114.

    [43]

    J. Thomann, Formal and Numerical Summation of Formal Power Series Solutions of ODE's, Technical report, CIRM Luminy, 2000.

    [44]

    F. Thomlinson, Generalized factorial series, Transactions of the American Mathematical Society, 31.

    [45]

    M. Thomson, The Calculus Of Finite Differences, Macmillan and Company, 1933.

    [46]

    J. van Deun, A. Bultheel and P. González Vera, On computing rational Gauss-Chebyshev quadrature formulas, Mathematics of Computation, 75 (2006), 307-326.doi: 10.1090/S0025-5718-05-01774-6.

    [47]

    G. N. Watson, The transformation of an asymptotic series into a convergent series of inverse factorials, Rendiconti del Circolo Matematico di Palermo, 34 (1912), 41-88.

    [48]

    E. Weniger, Summation of divergent power series by means of factorial series, Applied Numerical Mathematics, 60 (2010), 1429-1441.doi: 10.1016/j.apnum.2010.04.003.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(237) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return