April  2016, 9(2): 409-425. doi: 10.3934/dcdss.2016004

Modelling contact with isotropic and anisotropic friction by the bipotential approach

1. 

Laboratoire de Mécanique de Lille, UMR CNRS 8107, Université des Sciences et Technologies de Lille, bâtiment Boussinesq, Cité Scientifique, 59655 Villeneuve d'Ascq cedex

Received  May 2015 Revised  October 2015 Published  March 2016

Based on an extension of Fenchel's inequality, the bipotential approach is a non smooth mechanics tool used to model various non associative multivalued constitutive laws of dissipative materials (friction contact, soils, cyclic plasticity of metals, damage). Generally, such constitutive laws are given by a graph $M$. We propose a simple necessary and sufficient condition for the existence of a bipotential $b$ for which $M$ is the set of couples $(x,y)$ of dual variables such that $b(x,y) = \langle x,y \rangle$, and a method to construct such a bipotential by covering $M$ with cyclically monotone graphs which are not necessarily maximal (bipotential convex cover). As application, we show how to obtain the bipotential of the law of unilateral contact with Coulomb's friction by a bipotential convex cover. Introduced to extend the classical calculus of variation, the bipotential concept is also useful to construct numerical schemes for friction contact laws. In recents works, we extended the bipotential approach to a certain class of orthotropic frictional contact with a non-associated sliding rule proposed by Michałowski and Mróz. The bipotential suggests a predictor-corrector numerical scheme.
Citation: Géry de Saxcé. Modelling contact with isotropic and anisotropic friction by the bipotential approach. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 409-425. doi: 10.3934/dcdss.2016004
References:
[1]

G. Bodovillé, On damage and implicit standard materials,, C. R. Acad. Sci. Paris, 327 (1999), 715.   Google Scholar

[2]

G. Bodovillé and G. de Saxcé, Plasticity with non linear kinematic hardening: Modelling and shakedown analysis by the bipotential approach,, Eur. J. Mech., 20 (2001), 99.   Google Scholar

[3]

L. Bousshine, A. Chaaba and G. de Saxcé, Plastic limit load of plane frames with frictional contact supports,, Int. J. Mech. Sci., 44 (2002), 2189.  doi: 10.1016/S0020-7403(02)00135-2.  Google Scholar

[4]

M. Buliga, G. de Saxcé and C. Vallée, Existence and construction of bipotentials for graphs of multivalued laws,, J. Convex Analysis, 15 (2008), 87.   Google Scholar

[5]

M. Buliga, G. de Saxcé and C. Vallée, Bipotentials for non monotone multivalued operators: Fundamental results and applications,, Acta Applicandae Mathematicae, 110 (2010), 955.  doi: 10.1007/s10440-009-9488-3.  Google Scholar

[6]

M. Buliga, G. de Saxcé and C. Vallée, Non maximal cyclically monotone graphs and construction of a bipotential for the Coulomb's dry friction law,, J. Convex Analysis, 17 (2010), 81.   Google Scholar

[7]

G. de Saxcé, Une généralisation de l'inégalité de Fenchel et ses applications aux lois constitutives,, C. R. Acad. Sci. Paris, 314 (1992), 125.   Google Scholar

[8]

G. de Saxcé, The bipotential method, a new variational and numerical treatment of the dissipative laws of materials,, 10th Int. Conf. on Mathematical and Computer Modelling and Scientific Computing, (1995).   Google Scholar

[9]

G. de Saxcé and L. Bousshine, Implicit standard materials,, D. Weichert G. Maier eds. Inelastic behaviour of structures under variable repeated loads, (2002).   Google Scholar

[10]

G. de Saxcé and L. Bousshine, On the extension of limit analysis theorems to the non associated flow rules in soils and to the contact with Coulomb's friction,, XI Polish Conference on Computer Methods in Mechanics. Kielce, (1993), 815.   Google Scholar

[11]

G. de Saxcé and Z. Q. Feng, New inequality and functional for contact friction: The implicit standard material approach,, Mechanics of Structures and Machines, 19 (1991), 301.  doi: 10.1080/08905459108905146.  Google Scholar

[12]

G. de Saxcé and Z. Q. Feng, The bi-potential method: A constructive approach to design the complete contact law with friction and improved numerical algorithms,, Mathematical and Computer Modelling, 28 (1998), 225.  doi: 10.1016/S0895-7177(98)00119-8.  Google Scholar

[13]

W. Fenchel, On conjugate convex functions,, Canadian Journal of Mathematics, 1 (1949), 73.  doi: 10.4153/CJM-1949-007-x.  Google Scholar

[14]

Z.-Q. Feng, M. Hjiaj, G. de Saxcé and Z. Mróz, Effect of frictional anisotropy on the quasistatic motion of a deformable solid sliding on a planar surface,, Comput. Mech., 37 (2006), 349.  doi: 10.1007/s00466-005-0674-5.  Google Scholar

[15]

Z.-Q. Feng, M. Hjiaj, G. de Saxcé and Z. Mróz, Influence of frictional anisotropy on contacting surfaces during loading/unloading cycles,, International Journal of Non-Linear Mechanics, 41 (2006), 936.  doi: 10.1016/j.ijnonlinmec.2006.08.002.  Google Scholar

[16]

J. Fortin, M. Hjiaj and G. de Saxcé, An improved discrete element method based on a variational formulation of the frictional contact law,, Comput. Geotech., 29 (2002), 609.  doi: 10.1016/S0266-352X(02)00016-2.  Google Scholar

[17]

B. Halphen and S. Nguyen Quoc, Sur les matériaux standard généralisés,, C. R. Acad. Sci. Paris 14 (1975), 14 (1975), 39.   Google Scholar

[18]

M. Hjiaj, G. Bodovillé and G. de Saxcé, Matériaux viscoplastiques et loi de normalité implicites,, C. R. Acad. Sci. Paris, 328 (2000), 519.  doi: 10.1016/S1620-7742(00)00007-6.  Google Scholar

[19]

M. Hjiaj, G. de Saxcé and Z. Mróz, A variational-inequality based formulation of the frictional contact law with a non-associated sliding rule,, European Journal of Mechanics A/Solids, 21 (2002), 49.  doi: 10.1016/S0997-7538(01)01183-4.  Google Scholar

[20]

M. Hjiaj, Z.-Q. Feng, G. de Saxcé and Z. Mróz, Three dimensional finite element computations for frictional contact problems with on-associated sliding rule,, Int. J. Numer. Methods Eng., 60 (2004), 2045.  doi: 10.1002/nme.1037.  Google Scholar

[21]

P. Laborde and Y. Renard, Fixed points strategies for elastostatic frictional contact problems,, Math. Meth. Appl. Sci., 31 (2008), 415.  doi: 10.1002/mma.921.  Google Scholar

[22]

R. Michałowski and Z. Mróz, Associated and non-associated sliding rules in contact friction problems,, Archives of Mechanics, 11 (1978), 259.   Google Scholar

[23]

J. J. Moreau, Fonctionnelles Convexes,, Istituto Poligrafico e zecca dello stato, (2003).   Google Scholar

[24]

Z. Mróz and S. Stupkiewicz, An anisotropic fricition and wear model,, International Journal of Solids and Structures, 31 (1994), 1113.   Google Scholar

[25]

R. T. Rockafellar, Convex Analysis,, Princeton University Press, (1997).   Google Scholar

[26]

C. Vallée, C. Lerintiu, D. Fortuné, M. Ban and G. de Saxcé, Hill's bipotential,, M. Mihailescu-Suliciu eds. New Trends in Continuum Mechanics, (2005), 339.   Google Scholar

show all references

References:
[1]

G. Bodovillé, On damage and implicit standard materials,, C. R. Acad. Sci. Paris, 327 (1999), 715.   Google Scholar

[2]

G. Bodovillé and G. de Saxcé, Plasticity with non linear kinematic hardening: Modelling and shakedown analysis by the bipotential approach,, Eur. J. Mech., 20 (2001), 99.   Google Scholar

[3]

L. Bousshine, A. Chaaba and G. de Saxcé, Plastic limit load of plane frames with frictional contact supports,, Int. J. Mech. Sci., 44 (2002), 2189.  doi: 10.1016/S0020-7403(02)00135-2.  Google Scholar

[4]

M. Buliga, G. de Saxcé and C. Vallée, Existence and construction of bipotentials for graphs of multivalued laws,, J. Convex Analysis, 15 (2008), 87.   Google Scholar

[5]

M. Buliga, G. de Saxcé and C. Vallée, Bipotentials for non monotone multivalued operators: Fundamental results and applications,, Acta Applicandae Mathematicae, 110 (2010), 955.  doi: 10.1007/s10440-009-9488-3.  Google Scholar

[6]

M. Buliga, G. de Saxcé and C. Vallée, Non maximal cyclically monotone graphs and construction of a bipotential for the Coulomb's dry friction law,, J. Convex Analysis, 17 (2010), 81.   Google Scholar

[7]

G. de Saxcé, Une généralisation de l'inégalité de Fenchel et ses applications aux lois constitutives,, C. R. Acad. Sci. Paris, 314 (1992), 125.   Google Scholar

[8]

G. de Saxcé, The bipotential method, a new variational and numerical treatment of the dissipative laws of materials,, 10th Int. Conf. on Mathematical and Computer Modelling and Scientific Computing, (1995).   Google Scholar

[9]

G. de Saxcé and L. Bousshine, Implicit standard materials,, D. Weichert G. Maier eds. Inelastic behaviour of structures under variable repeated loads, (2002).   Google Scholar

[10]

G. de Saxcé and L. Bousshine, On the extension of limit analysis theorems to the non associated flow rules in soils and to the contact with Coulomb's friction,, XI Polish Conference on Computer Methods in Mechanics. Kielce, (1993), 815.   Google Scholar

[11]

G. de Saxcé and Z. Q. Feng, New inequality and functional for contact friction: The implicit standard material approach,, Mechanics of Structures and Machines, 19 (1991), 301.  doi: 10.1080/08905459108905146.  Google Scholar

[12]

G. de Saxcé and Z. Q. Feng, The bi-potential method: A constructive approach to design the complete contact law with friction and improved numerical algorithms,, Mathematical and Computer Modelling, 28 (1998), 225.  doi: 10.1016/S0895-7177(98)00119-8.  Google Scholar

[13]

W. Fenchel, On conjugate convex functions,, Canadian Journal of Mathematics, 1 (1949), 73.  doi: 10.4153/CJM-1949-007-x.  Google Scholar

[14]

Z.-Q. Feng, M. Hjiaj, G. de Saxcé and Z. Mróz, Effect of frictional anisotropy on the quasistatic motion of a deformable solid sliding on a planar surface,, Comput. Mech., 37 (2006), 349.  doi: 10.1007/s00466-005-0674-5.  Google Scholar

[15]

Z.-Q. Feng, M. Hjiaj, G. de Saxcé and Z. Mróz, Influence of frictional anisotropy on contacting surfaces during loading/unloading cycles,, International Journal of Non-Linear Mechanics, 41 (2006), 936.  doi: 10.1016/j.ijnonlinmec.2006.08.002.  Google Scholar

[16]

J. Fortin, M. Hjiaj and G. de Saxcé, An improved discrete element method based on a variational formulation of the frictional contact law,, Comput. Geotech., 29 (2002), 609.  doi: 10.1016/S0266-352X(02)00016-2.  Google Scholar

[17]

B. Halphen and S. Nguyen Quoc, Sur les matériaux standard généralisés,, C. R. Acad. Sci. Paris 14 (1975), 14 (1975), 39.   Google Scholar

[18]

M. Hjiaj, G. Bodovillé and G. de Saxcé, Matériaux viscoplastiques et loi de normalité implicites,, C. R. Acad. Sci. Paris, 328 (2000), 519.  doi: 10.1016/S1620-7742(00)00007-6.  Google Scholar

[19]

M. Hjiaj, G. de Saxcé and Z. Mróz, A variational-inequality based formulation of the frictional contact law with a non-associated sliding rule,, European Journal of Mechanics A/Solids, 21 (2002), 49.  doi: 10.1016/S0997-7538(01)01183-4.  Google Scholar

[20]

M. Hjiaj, Z.-Q. Feng, G. de Saxcé and Z. Mróz, Three dimensional finite element computations for frictional contact problems with on-associated sliding rule,, Int. J. Numer. Methods Eng., 60 (2004), 2045.  doi: 10.1002/nme.1037.  Google Scholar

[21]

P. Laborde and Y. Renard, Fixed points strategies for elastostatic frictional contact problems,, Math. Meth. Appl. Sci., 31 (2008), 415.  doi: 10.1002/mma.921.  Google Scholar

[22]

R. Michałowski and Z. Mróz, Associated and non-associated sliding rules in contact friction problems,, Archives of Mechanics, 11 (1978), 259.   Google Scholar

[23]

J. J. Moreau, Fonctionnelles Convexes,, Istituto Poligrafico e zecca dello stato, (2003).   Google Scholar

[24]

Z. Mróz and S. Stupkiewicz, An anisotropic fricition and wear model,, International Journal of Solids and Structures, 31 (1994), 1113.   Google Scholar

[25]

R. T. Rockafellar, Convex Analysis,, Princeton University Press, (1997).   Google Scholar

[26]

C. Vallée, C. Lerintiu, D. Fortuné, M. Ban and G. de Saxcé, Hill's bipotential,, M. Mihailescu-Suliciu eds. New Trends in Continuum Mechanics, (2005), 339.   Google Scholar

[1]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[2]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[3]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[4]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[5]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[6]

Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262

[7]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[8]

Onur Şimşek, O. Erhun Kundakcioglu. Cost of fairness in agent scheduling for contact centers. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021001

[9]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[10]

Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094

[11]

Bao Wang, Alex Lin, Penghang Yin, Wei Zhu, Andrea L. Bertozzi, Stanley J. Osher. Adversarial defense via the data-dependent activation, total variation minimization, and adversarial training. Inverse Problems & Imaging, 2021, 15 (1) : 129-145. doi: 10.3934/ipi.2020046

[12]

Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168

[13]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[14]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[15]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

[16]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[17]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296

[18]

Michal Beneš, Pavel Eichler, Jakub Klinkovský, Miroslav Kolář, Jakub Solovský, Pavel Strachota, Alexandr Žák. Numerical simulation of fluidization for application in oxyfuel combustion. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 769-783. doi: 10.3934/dcdss.2020232

[19]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[20]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]