April  2016, 9(2): 409-425. doi: 10.3934/dcdss.2016004

Modelling contact with isotropic and anisotropic friction by the bipotential approach

1. 

Laboratoire de Mécanique de Lille, UMR CNRS 8107, Université des Sciences et Technologies de Lille, bâtiment Boussinesq, Cité Scientifique, 59655 Villeneuve d'Ascq cedex

Received  May 2015 Revised  October 2015 Published  March 2016

Based on an extension of Fenchel's inequality, the bipotential approach is a non smooth mechanics tool used to model various non associative multivalued constitutive laws of dissipative materials (friction contact, soils, cyclic plasticity of metals, damage). Generally, such constitutive laws are given by a graph $M$. We propose a simple necessary and sufficient condition for the existence of a bipotential $b$ for which $M$ is the set of couples $(x,y)$ of dual variables such that $b(x,y) = \langle x,y \rangle$, and a method to construct such a bipotential by covering $M$ with cyclically monotone graphs which are not necessarily maximal (bipotential convex cover). As application, we show how to obtain the bipotential of the law of unilateral contact with Coulomb's friction by a bipotential convex cover. Introduced to extend the classical calculus of variation, the bipotential concept is also useful to construct numerical schemes for friction contact laws. In recents works, we extended the bipotential approach to a certain class of orthotropic frictional contact with a non-associated sliding rule proposed by Michałowski and Mróz. The bipotential suggests a predictor-corrector numerical scheme.
Citation: Géry de Saxcé. Modelling contact with isotropic and anisotropic friction by the bipotential approach. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 409-425. doi: 10.3934/dcdss.2016004
References:
[1]

G. Bodovillé, On damage and implicit standard materials,, C. R. Acad. Sci. Paris, 327 (1999), 715.   Google Scholar

[2]

G. Bodovillé and G. de Saxcé, Plasticity with non linear kinematic hardening: Modelling and shakedown analysis by the bipotential approach,, Eur. J. Mech., 20 (2001), 99.   Google Scholar

[3]

L. Bousshine, A. Chaaba and G. de Saxcé, Plastic limit load of plane frames with frictional contact supports,, Int. J. Mech. Sci., 44 (2002), 2189.  doi: 10.1016/S0020-7403(02)00135-2.  Google Scholar

[4]

M. Buliga, G. de Saxcé and C. Vallée, Existence and construction of bipotentials for graphs of multivalued laws,, J. Convex Analysis, 15 (2008), 87.   Google Scholar

[5]

M. Buliga, G. de Saxcé and C. Vallée, Bipotentials for non monotone multivalued operators: Fundamental results and applications,, Acta Applicandae Mathematicae, 110 (2010), 955.  doi: 10.1007/s10440-009-9488-3.  Google Scholar

[6]

M. Buliga, G. de Saxcé and C. Vallée, Non maximal cyclically monotone graphs and construction of a bipotential for the Coulomb's dry friction law,, J. Convex Analysis, 17 (2010), 81.   Google Scholar

[7]

G. de Saxcé, Une généralisation de l'inégalité de Fenchel et ses applications aux lois constitutives,, C. R. Acad. Sci. Paris, 314 (1992), 125.   Google Scholar

[8]

G. de Saxcé, The bipotential method, a new variational and numerical treatment of the dissipative laws of materials,, 10th Int. Conf. on Mathematical and Computer Modelling and Scientific Computing, (1995).   Google Scholar

[9]

G. de Saxcé and L. Bousshine, Implicit standard materials,, D. Weichert G. Maier eds. Inelastic behaviour of structures under variable repeated loads, (2002).   Google Scholar

[10]

G. de Saxcé and L. Bousshine, On the extension of limit analysis theorems to the non associated flow rules in soils and to the contact with Coulomb's friction,, XI Polish Conference on Computer Methods in Mechanics. Kielce, (1993), 815.   Google Scholar

[11]

G. de Saxcé and Z. Q. Feng, New inequality and functional for contact friction: The implicit standard material approach,, Mechanics of Structures and Machines, 19 (1991), 301.  doi: 10.1080/08905459108905146.  Google Scholar

[12]

G. de Saxcé and Z. Q. Feng, The bi-potential method: A constructive approach to design the complete contact law with friction and improved numerical algorithms,, Mathematical and Computer Modelling, 28 (1998), 225.  doi: 10.1016/S0895-7177(98)00119-8.  Google Scholar

[13]

W. Fenchel, On conjugate convex functions,, Canadian Journal of Mathematics, 1 (1949), 73.  doi: 10.4153/CJM-1949-007-x.  Google Scholar

[14]

Z.-Q. Feng, M. Hjiaj, G. de Saxcé and Z. Mróz, Effect of frictional anisotropy on the quasistatic motion of a deformable solid sliding on a planar surface,, Comput. Mech., 37 (2006), 349.  doi: 10.1007/s00466-005-0674-5.  Google Scholar

[15]

Z.-Q. Feng, M. Hjiaj, G. de Saxcé and Z. Mróz, Influence of frictional anisotropy on contacting surfaces during loading/unloading cycles,, International Journal of Non-Linear Mechanics, 41 (2006), 936.  doi: 10.1016/j.ijnonlinmec.2006.08.002.  Google Scholar

[16]

J. Fortin, M. Hjiaj and G. de Saxcé, An improved discrete element method based on a variational formulation of the frictional contact law,, Comput. Geotech., 29 (2002), 609.  doi: 10.1016/S0266-352X(02)00016-2.  Google Scholar

[17]

B. Halphen and S. Nguyen Quoc, Sur les matériaux standard généralisés,, C. R. Acad. Sci. Paris 14 (1975), 14 (1975), 39.   Google Scholar

[18]

M. Hjiaj, G. Bodovillé and G. de Saxcé, Matériaux viscoplastiques et loi de normalité implicites,, C. R. Acad. Sci. Paris, 328 (2000), 519.  doi: 10.1016/S1620-7742(00)00007-6.  Google Scholar

[19]

M. Hjiaj, G. de Saxcé and Z. Mróz, A variational-inequality based formulation of the frictional contact law with a non-associated sliding rule,, European Journal of Mechanics A/Solids, 21 (2002), 49.  doi: 10.1016/S0997-7538(01)01183-4.  Google Scholar

[20]

M. Hjiaj, Z.-Q. Feng, G. de Saxcé and Z. Mróz, Three dimensional finite element computations for frictional contact problems with on-associated sliding rule,, Int. J. Numer. Methods Eng., 60 (2004), 2045.  doi: 10.1002/nme.1037.  Google Scholar

[21]

P. Laborde and Y. Renard, Fixed points strategies for elastostatic frictional contact problems,, Math. Meth. Appl. Sci., 31 (2008), 415.  doi: 10.1002/mma.921.  Google Scholar

[22]

R. Michałowski and Z. Mróz, Associated and non-associated sliding rules in contact friction problems,, Archives of Mechanics, 11 (1978), 259.   Google Scholar

[23]

J. J. Moreau, Fonctionnelles Convexes,, Istituto Poligrafico e zecca dello stato, (2003).   Google Scholar

[24]

Z. Mróz and S. Stupkiewicz, An anisotropic fricition and wear model,, International Journal of Solids and Structures, 31 (1994), 1113.   Google Scholar

[25]

R. T. Rockafellar, Convex Analysis,, Princeton University Press, (1997).   Google Scholar

[26]

C. Vallée, C. Lerintiu, D. Fortuné, M. Ban and G. de Saxcé, Hill's bipotential,, M. Mihailescu-Suliciu eds. New Trends in Continuum Mechanics, (2005), 339.   Google Scholar

show all references

References:
[1]

G. Bodovillé, On damage and implicit standard materials,, C. R. Acad. Sci. Paris, 327 (1999), 715.   Google Scholar

[2]

G. Bodovillé and G. de Saxcé, Plasticity with non linear kinematic hardening: Modelling and shakedown analysis by the bipotential approach,, Eur. J. Mech., 20 (2001), 99.   Google Scholar

[3]

L. Bousshine, A. Chaaba and G. de Saxcé, Plastic limit load of plane frames with frictional contact supports,, Int. J. Mech. Sci., 44 (2002), 2189.  doi: 10.1016/S0020-7403(02)00135-2.  Google Scholar

[4]

M. Buliga, G. de Saxcé and C. Vallée, Existence and construction of bipotentials for graphs of multivalued laws,, J. Convex Analysis, 15 (2008), 87.   Google Scholar

[5]

M. Buliga, G. de Saxcé and C. Vallée, Bipotentials for non monotone multivalued operators: Fundamental results and applications,, Acta Applicandae Mathematicae, 110 (2010), 955.  doi: 10.1007/s10440-009-9488-3.  Google Scholar

[6]

M. Buliga, G. de Saxcé and C. Vallée, Non maximal cyclically monotone graphs and construction of a bipotential for the Coulomb's dry friction law,, J. Convex Analysis, 17 (2010), 81.   Google Scholar

[7]

G. de Saxcé, Une généralisation de l'inégalité de Fenchel et ses applications aux lois constitutives,, C. R. Acad. Sci. Paris, 314 (1992), 125.   Google Scholar

[8]

G. de Saxcé, The bipotential method, a new variational and numerical treatment of the dissipative laws of materials,, 10th Int. Conf. on Mathematical and Computer Modelling and Scientific Computing, (1995).   Google Scholar

[9]

G. de Saxcé and L. Bousshine, Implicit standard materials,, D. Weichert G. Maier eds. Inelastic behaviour of structures under variable repeated loads, (2002).   Google Scholar

[10]

G. de Saxcé and L. Bousshine, On the extension of limit analysis theorems to the non associated flow rules in soils and to the contact with Coulomb's friction,, XI Polish Conference on Computer Methods in Mechanics. Kielce, (1993), 815.   Google Scholar

[11]

G. de Saxcé and Z. Q. Feng, New inequality and functional for contact friction: The implicit standard material approach,, Mechanics of Structures and Machines, 19 (1991), 301.  doi: 10.1080/08905459108905146.  Google Scholar

[12]

G. de Saxcé and Z. Q. Feng, The bi-potential method: A constructive approach to design the complete contact law with friction and improved numerical algorithms,, Mathematical and Computer Modelling, 28 (1998), 225.  doi: 10.1016/S0895-7177(98)00119-8.  Google Scholar

[13]

W. Fenchel, On conjugate convex functions,, Canadian Journal of Mathematics, 1 (1949), 73.  doi: 10.4153/CJM-1949-007-x.  Google Scholar

[14]

Z.-Q. Feng, M. Hjiaj, G. de Saxcé and Z. Mróz, Effect of frictional anisotropy on the quasistatic motion of a deformable solid sliding on a planar surface,, Comput. Mech., 37 (2006), 349.  doi: 10.1007/s00466-005-0674-5.  Google Scholar

[15]

Z.-Q. Feng, M. Hjiaj, G. de Saxcé and Z. Mróz, Influence of frictional anisotropy on contacting surfaces during loading/unloading cycles,, International Journal of Non-Linear Mechanics, 41 (2006), 936.  doi: 10.1016/j.ijnonlinmec.2006.08.002.  Google Scholar

[16]

J. Fortin, M. Hjiaj and G. de Saxcé, An improved discrete element method based on a variational formulation of the frictional contact law,, Comput. Geotech., 29 (2002), 609.  doi: 10.1016/S0266-352X(02)00016-2.  Google Scholar

[17]

B. Halphen and S. Nguyen Quoc, Sur les matériaux standard généralisés,, C. R. Acad. Sci. Paris 14 (1975), 14 (1975), 39.   Google Scholar

[18]

M. Hjiaj, G. Bodovillé and G. de Saxcé, Matériaux viscoplastiques et loi de normalité implicites,, C. R. Acad. Sci. Paris, 328 (2000), 519.  doi: 10.1016/S1620-7742(00)00007-6.  Google Scholar

[19]

M. Hjiaj, G. de Saxcé and Z. Mróz, A variational-inequality based formulation of the frictional contact law with a non-associated sliding rule,, European Journal of Mechanics A/Solids, 21 (2002), 49.  doi: 10.1016/S0997-7538(01)01183-4.  Google Scholar

[20]

M. Hjiaj, Z.-Q. Feng, G. de Saxcé and Z. Mróz, Three dimensional finite element computations for frictional contact problems with on-associated sliding rule,, Int. J. Numer. Methods Eng., 60 (2004), 2045.  doi: 10.1002/nme.1037.  Google Scholar

[21]

P. Laborde and Y. Renard, Fixed points strategies for elastostatic frictional contact problems,, Math. Meth. Appl. Sci., 31 (2008), 415.  doi: 10.1002/mma.921.  Google Scholar

[22]

R. Michałowski and Z. Mróz, Associated and non-associated sliding rules in contact friction problems,, Archives of Mechanics, 11 (1978), 259.   Google Scholar

[23]

J. J. Moreau, Fonctionnelles Convexes,, Istituto Poligrafico e zecca dello stato, (2003).   Google Scholar

[24]

Z. Mróz and S. Stupkiewicz, An anisotropic fricition and wear model,, International Journal of Solids and Structures, 31 (1994), 1113.   Google Scholar

[25]

R. T. Rockafellar, Convex Analysis,, Princeton University Press, (1997).   Google Scholar

[26]

C. Vallée, C. Lerintiu, D. Fortuné, M. Ban and G. de Saxcé, Hill's bipotential,, M. Mihailescu-Suliciu eds. New Trends in Continuum Mechanics, (2005), 339.   Google Scholar

[1]

Stanislaw Migórski, Anna Ochal, Mircea Sofonea. Analysis of a dynamic Elastic-Viscoplastic contact problem with friction. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 887-902. doi: 10.3934/dcdsb.2008.10.887

[2]

Alain Léger, Elaine Pratt. On the equilibria and qualitative dynamics of a forced nonlinear oscillator with contact and friction. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 501-527. doi: 10.3934/dcdss.2016009

[3]

Stanislaw Migórski. A class of hemivariational inequalities for electroelastic contact problems with slip dependent friction. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 117-126. doi: 10.3934/dcdss.2008.1.117

[4]

Marx Chhay, Aziz Hamdouni. On the accuracy of invariant numerical schemes. Communications on Pure & Applied Analysis, 2011, 10 (2) : 761-783. doi: 10.3934/cpaa.2011.10.761

[5]

Anna Ochal, Michal Jureczka. Numerical treatment of contact problems with thermal effect. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 387-400. doi: 10.3934/dcdsb.2018027

[6]

Amina Amassad, Mircea Sofonea. Analysis of a quasistatic viscoplastic problem involving tresca friction law. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 55-72. doi: 10.3934/dcds.1998.4.55

[7]

Nelly Point, Silvano Erlicher. Convex analysis and thermodynamics. Kinetic & Related Models, 2013, 6 (4) : 945-954. doi: 10.3934/krm.2013.6.945

[8]

P. Smoczynski, Mohamed Aly Tawhid. Two numerical schemes for general variational inequalities. Journal of Industrial & Management Optimization, 2008, 4 (2) : 393-406. doi: 10.3934/jimo.2008.4.393

[9]

Oanh Chau, R. Oujja, Mohamed Rochdi. A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 61-70. doi: 10.3934/dcdss.2008.1.61

[10]

María Teresa Cao-Rial, Peregrina Quintela, Carlos Moreno. Numerical solution of a time-dependent Signorini contact problem. Conference Publications, 2007, 2007 (Special) : 201-211. doi: 10.3934/proc.2007.2007.201

[11]

Roberto Avanzi, Nicolas Thériault. A filtering method for the hyperelliptic curve index calculus and its analysis. Advances in Mathematics of Communications, 2010, 4 (2) : 189-213. doi: 10.3934/amc.2010.4.189

[12]

Nicolas Lerner, Yoshinori Morimoto, Karel Pravda-Starov, Chao-Jiang Xu. Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators. Kinetic & Related Models, 2013, 6 (3) : 625-648. doi: 10.3934/krm.2013.6.625

[13]

Nikolaos Halidias. Construction of positivity preserving numerical schemes for some multidimensional stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 153-160. doi: 10.3934/dcdsb.2015.20.153

[14]

Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic & Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019

[15]

Patrick Henning, Johan Wärnegård. Numerical comparison of mass-conservative schemes for the Gross-Pitaevskii equation. Kinetic & Related Models, 2019, 12 (6) : 1247-1271. doi: 10.3934/krm.2019048

[16]

Xiaoliang Cheng, Stanisław Migórski, Anna Ochal, Mircea Sofonea. Analysis of two quasistatic history-dependent contact models. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2425-2445. doi: 10.3934/dcdsb.2014.19.2425

[17]

Maria-Magdalena Boureanu, Andaluzia Matei, Mircea Sofonea. Analysis of a contact problem for electro-elastic-visco-plastic materials. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1185-1203. doi: 10.3934/cpaa.2012.11.1185

[18]

Stanisław Migórski, Anna Ochal, Mircea Sofonea. Analysis of a frictional contact problem for viscoelastic materials with long memory. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 687-705. doi: 10.3934/dcdsb.2011.15.687

[19]

Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 461-478. doi: 10.3934/dcdss.2013.6.461

[20]

Bailey Kacsmar, Douglas R. Stinson. A network reliability approach to the analysis of combinatorial repairable threshold schemes. Advances in Mathematics of Communications, 2019, 13 (4) : 601-612. doi: 10.3934/amc.2019037

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]