April  2016, 9(2): 427-444. doi: 10.3934/dcdss.2016005

Few remarks on the use of Love waves in non destructive testing

1. 

Département d'ingénierie mathématique, Conservatoire National des Arts et Métiers, 292, rue saint Martin, 75003 Paris, France

2. 

Laboratoire de mathématiques d'Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France

Received  January 2015 Revised  October 2015 Published  March 2016

This paper concerns a theoretical study on the possibility of using Love waves for non destructive testing. A mathematical model is presented and analyzed. Several numerical tests are given in order to show the mechanical behaviour of this model.
Citation: Philippe Destuynder, Caroline Fabre. Few remarks on the use of Love waves in non destructive testing. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 427-444. doi: 10.3934/dcdss.2016005
References:
[1]

M. Amara, Ph. Destuynder and M. Djaoua, On a finite element schem for plane crack problems, Numer. Meth. in Frac. Mech., D.R.J. Owen and A.R. Luxmoore, Pinridge Press, Swansea, (1980), 41-50.

[2]

H. Brezis, Analyse Fonctionnelle, Masson, Paris, 1983.

[3]

H. D. Bui, Mécanique de la Rupture Fragile, Masson, 1979.

[4]

P. G. Ciarlet, The Finite Element Mehod for Elliptic Problems, Elsevier, Amsterdam, 1978.

[5]

Ph. Destuynder and C. Fabre, Singularities occuring in multimaterials with traPHDCF3nsparent boundary conditions, to appear in Quaterly of Applied Maths, (2016).

[6]

Ph. Destuynder and C. Fabre, On the Detection of Cracks in Linear Elasticity, research report CNAM, 2015.

[7]

Ph. Destuynder and M. Djaoua, Sur une interpretation mathématique de l'intégrale de Rice en mécanique de la rupture fragile, Mathematical Methods in the Applied Sciences, 3 (1981), 70-87. doi: 10.1002/mma.1670030106.

[8]

G. Diot, A. Kouadri-David, L. Dubourg, J. Flifla, S. Guegan and E. Ragneau, Mesures de Défauts par Ultrasons Laser Dans Des Soudures D'alliage D'aluminium, Publications du CETIM, 2014.

[9]

M. Dobrowolski, Numerical Approximation of Elliptic Interface and Corner Problems, Habilitationsschrift, Bonn, 1981.

[10]

J.-C. Dumont-Fillon, Contrôle non Destructif Par Les Ondes de Love et Lamb, Editions Techniques de l'ingénieur, 2012.

[11]

A. Galvagni and P. Cawley, The reflection of guided waves from simple supports in pipes, AIP Conf. Proc., 105 (2011), p1335. doi: 10.1063/1.3591845.

[12]

E. Holmgren, Über systeme von linearen partiellen differentialgleichungen, Öfversigt af kongl, Vetenskaps-Academien Förhandlinger, 58 (1901), 91-103.

[13]

M. J. S. Lowe, Characteristics of the reflection of Lamb waves from defects in plates and pipes, Review of Progress in Quantitative NDE, DO Thompson and DE Chimenti (eds), Plenum Pr ess, New-York, 17 (2002), 113-120. doi: 10.1007/978-1-4615-5339-7_14.

[14]

S. G. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1999.

[15]

P. M. Marty, Modelling of Ultrasonic Guided Wave Field Generated by Piezoelectric Transducers, Thesis at Imperial college of science, technology and medecine, university of London, (2002), http://www3.imperial.ac.uk/pls/portallive/docs/1/50545711.PDF

[16]

J. Necas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris, (1965).

[17]

P. A. Raviart and J. M. Thomas, Approximation des Équations aux Dérivées Partielles, Masson, Paris, 1986.

[18]

R. Ribichini, F. Cegla, P. Nagy and P. Cawley, Study and comparison of different EMAT configurations for SH wave inspection, IEEE Trans.UFFC, 58 (2011), 2571-2581. doi: 10.1109/TUFFC.2011.2120.

[19]

G. Strang and G. Fix, Analysis of the Finite Elements Method, Prentice Hall; Edition: First Edition, 1973.

[20]

A. N. Tychonoff, Solution of incorrectly formulated problems and the regularization method, Soviet Math Dokl, 4 (2011), 1035-1038; English translation of Dokl Akad Nauk SSSR, 151 (1963), 501-504.

[21]

D. Zagier, The Dilog function, http://maths.dur.ac.uk/~dma0hg/dilog.pdf (2007).

show all references

References:
[1]

M. Amara, Ph. Destuynder and M. Djaoua, On a finite element schem for plane crack problems, Numer. Meth. in Frac. Mech., D.R.J. Owen and A.R. Luxmoore, Pinridge Press, Swansea, (1980), 41-50.

[2]

H. Brezis, Analyse Fonctionnelle, Masson, Paris, 1983.

[3]

H. D. Bui, Mécanique de la Rupture Fragile, Masson, 1979.

[4]

P. G. Ciarlet, The Finite Element Mehod for Elliptic Problems, Elsevier, Amsterdam, 1978.

[5]

Ph. Destuynder and C. Fabre, Singularities occuring in multimaterials with traPHDCF3nsparent boundary conditions, to appear in Quaterly of Applied Maths, (2016).

[6]

Ph. Destuynder and C. Fabre, On the Detection of Cracks in Linear Elasticity, research report CNAM, 2015.

[7]

Ph. Destuynder and M. Djaoua, Sur une interpretation mathématique de l'intégrale de Rice en mécanique de la rupture fragile, Mathematical Methods in the Applied Sciences, 3 (1981), 70-87. doi: 10.1002/mma.1670030106.

[8]

G. Diot, A. Kouadri-David, L. Dubourg, J. Flifla, S. Guegan and E. Ragneau, Mesures de Défauts par Ultrasons Laser Dans Des Soudures D'alliage D'aluminium, Publications du CETIM, 2014.

[9]

M. Dobrowolski, Numerical Approximation of Elliptic Interface and Corner Problems, Habilitationsschrift, Bonn, 1981.

[10]

J.-C. Dumont-Fillon, Contrôle non Destructif Par Les Ondes de Love et Lamb, Editions Techniques de l'ingénieur, 2012.

[11]

A. Galvagni and P. Cawley, The reflection of guided waves from simple supports in pipes, AIP Conf. Proc., 105 (2011), p1335. doi: 10.1063/1.3591845.

[12]

E. Holmgren, Über systeme von linearen partiellen differentialgleichungen, Öfversigt af kongl, Vetenskaps-Academien Förhandlinger, 58 (1901), 91-103.

[13]

M. J. S. Lowe, Characteristics of the reflection of Lamb waves from defects in plates and pipes, Review of Progress in Quantitative NDE, DO Thompson and DE Chimenti (eds), Plenum Pr ess, New-York, 17 (2002), 113-120. doi: 10.1007/978-1-4615-5339-7_14.

[14]

S. G. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 1999.

[15]

P. M. Marty, Modelling of Ultrasonic Guided Wave Field Generated by Piezoelectric Transducers, Thesis at Imperial college of science, technology and medecine, university of London, (2002), http://www3.imperial.ac.uk/pls/portallive/docs/1/50545711.PDF

[16]

J. Necas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris, (1965).

[17]

P. A. Raviart and J. M. Thomas, Approximation des Équations aux Dérivées Partielles, Masson, Paris, 1986.

[18]

R. Ribichini, F. Cegla, P. Nagy and P. Cawley, Study and comparison of different EMAT configurations for SH wave inspection, IEEE Trans.UFFC, 58 (2011), 2571-2581. doi: 10.1109/TUFFC.2011.2120.

[19]

G. Strang and G. Fix, Analysis of the Finite Elements Method, Prentice Hall; Edition: First Edition, 1973.

[20]

A. N. Tychonoff, Solution of incorrectly formulated problems and the regularization method, Soviet Math Dokl, 4 (2011), 1035-1038; English translation of Dokl Akad Nauk SSSR, 151 (1963), 501-504.

[21]

D. Zagier, The Dilog function, http://maths.dur.ac.uk/~dma0hg/dilog.pdf (2007).

[1]

Maike Schulte, Anton Arnold. Discrete transparent boundary conditions for the Schrodinger equation -- a compact higher order scheme. Kinetic and Related Models, 2008, 1 (1) : 101-125. doi: 10.3934/krm.2008.1.101

[2]

Sari Lasanen. Non-Gaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Problems and Imaging, 2012, 6 (2) : 267-287. doi: 10.3934/ipi.2012.6.267

[3]

Sari Lasanen. Non-Gaussian statistical inverse problems. Part I: Posterior distributions. Inverse Problems and Imaging, 2012, 6 (2) : 215-266. doi: 10.3934/ipi.2012.6.215

[4]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic and Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[5]

Bernard Ducomet, Alexander Zlotnik, Ilya Zlotnik. On a family of finite-difference schemes with approximate transparent boundary conditions for a generalized 1D Schrödinger equation. Kinetic and Related Models, 2009, 2 (1) : 151-179. doi: 10.3934/krm.2009.2.151

[6]

Tony Liimatainen, Lauri Oksanen. Counterexamples to inverse problems for the wave equation. Inverse Problems and Imaging, 2022, 16 (2) : 467-479. doi: 10.3934/ipi.2021058

[7]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[8]

Anna Doubova, Enrique Fernández-Cara. Some geometric inverse problems for the linear wave equation. Inverse Problems and Imaging, 2015, 9 (2) : 371-393. doi: 10.3934/ipi.2015.9.371

[9]

Vesselin Petkov. Location of eigenvalues for the wave equation with dissipative boundary conditions. Inverse Problems and Imaging, 2016, 10 (4) : 1111-1139. doi: 10.3934/ipi.2016034

[10]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems and Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

[11]

Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems and Imaging, 2010, 4 (1) : 19-38. doi: 10.3934/ipi.2010.4.19

[12]

R.M. Brown, L.D. Gauthier. Inverse boundary value problems for polyharmonic operators with non-smooth coefficients. Inverse Problems and Imaging, 2022, 16 (4) : 943-966. doi: 10.3934/ipi.2022006

[13]

Rafael Abreu, Cristian Morales-Rodrigo, Antonio Suárez. Some eigenvalue problems with non-local boundary conditions and applications. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2465-2474. doi: 10.3934/cpaa.2014.13.2465

[14]

Nicolas Fourrier, Irena Lasiecka. Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evolution Equations and Control Theory, 2013, 2 (4) : 631-667. doi: 10.3934/eect.2013.2.631

[15]

Guanggan Chen, Jian Zhang. Asymptotic behavior for a stochastic wave equation with dynamical boundary conditions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1441-1453. doi: 10.3934/dcdsb.2012.17.1441

[16]

Michael Renardy. A backward uniqueness result for the wave equation with absorbing boundary conditions. Evolution Equations and Control Theory, 2015, 4 (3) : 347-353. doi: 10.3934/eect.2015.4.347

[17]

Arnaud Heibig, Mohand Moussaoui. Exact controllability of the wave equation for domains with slits and for mixed boundary conditions. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 367-386. doi: 10.3934/dcds.1996.2.367

[18]

Andrzej Nowakowski. Variational approach to stability of semilinear wave equation with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2603-2616. doi: 10.3934/dcdsb.2014.19.2603

[19]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[20]

Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (160)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]