April  2016, 9(2): 475-500. doi: 10.3934/dcdss.2016008

On the space separated representation when addressing the solution of PDE in complex domains

1. 

Notre Dame University-Louaize, Zouk Mosbeh P.O. Box 72, Lebanon

2. 

GeM Institute, UMR CNRS - Ecole Centrale de Nantes, 1 rue de la Noe, BP 92101, F-44321 Nantes cedex 3, France, France

3. 

LHEEA, UMR CNRS - Ecole Centrale de Nantes, 1 rue de la Noe, BP 92101, F-44321 Nantes cedex 3, France

4. 

High Performance Computing Institute - Ecole Centrale de Nantes, 1 rue de la Noe, BP 92101, F-44321 Nantes cedex 3, France

5. 

P' Institute, UPR CNRS - University of Poitiers & ENSMA, 11 Boulevard Marie et Pierre Curie, BP 30179, F-86962 Futuroscope Chasseneuil cedex, France

Received  September 2014 Revised  October 2015 Published  March 2016

Separated representations allow impressive computational CPU time savings when applied in different fields of computational mechanics. They have been extensively used for solving models defined in multidimensional spaces coming from (i) its proper physics, (ii) model parameters that were introduced as extra-coordinates and (iii) 3D models when the solution can be separated as a finite sum of functional products involving lower dimensional spaces. The last route is especially suitable when models are defined in hexahedral domains. When it is not the case, different possibilities exist and were considered in our former works. In the present work, we are analyzing two alternative routes. The first one consists of immersing the real non-separable domain into a fully separable hexahedral domain. The second procedure consists in applying a geometrical transformation able to transform the real domain into a hexahedra in which the model is solved by using a fully separated representation of the unknown field.
Citation: Chady Ghnatios, Guangtao Xu, Adrien Leygue, Michel Visonneau, Francisco Chinesta, Alain Cimetiere. On the space separated representation when addressing the solution of PDE in complex domains. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 475-500. doi: 10.3934/dcdss.2016008
References:
[1]

A. Ammar, B. Mokdad, F. Chinesta and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids, Journal of Non-Newtonian Fluid Mechanics, 139 (2006), 153-176. doi: 10.1016/j.jnnfm.2006.07.007.

[2]

A. Ammar, D. Ryckelynck, F. Chinesta and R. Keunings, On the reduction of kinetic theory models related to finitely extensible dumbbells, Journal of Non-Newtonian Fluid Mechanics, 134 (2006), 136-147. doi: 10.1016/j.jnnfm.2006.01.007.

[3]

A. Ammar, B. Mokdad, F. Chinesta and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: Transient simulation using space-time separated representation, Journal of Non-Newtonian Fluid Mechanics, 144 (2007), 98-121.

[4]

A. Ammar, F. Chinesta and P. Joyot, The nanometric and micrometric scales of the structure and mechanics of materials revisited: An introduction to the challenges of fully deterministic numerical descriptions, International Journal for Multiscale Computational Engineering, 6/3 (2008), 191-213. doi: 10.1615/IntJMultCompEng.v6.i3.20.

[5]

A. Ammar, M. Normandin and F. Chinesta, Solving parametric complex fluids models in rheometric flows, Journal of Non-Newtonian Fluid Mechanics, 165 (2010), 1588-1601. doi: 10.1016/j.jnnfm.2010.08.006.

[6]

A. Ammar, E. Cueto and F. Chinesta, Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions, International Journal for Numerical Methods in Biomedical Engineering, 28 (2012), 960-973. doi: 10.1002/cnm.2476.

[7]

A. Ammar, A. Huerta, F. Chinesta, E. Cueto and A. Leygue, Parametric solutions involving geometry: A step towards efficient shape optimization, Computer Methods in Applied Mechanics and Engineering, 268 (2014), 178-193. doi: 10.1016/j.cma.2013.09.003.

[8]

N. Bellomo, Modeling Complex Living Systems, Birkhauser, 2008.

[9]

R. A. Bialecki, A. J. Kassab and A. Fic, Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis, Int. J. Numer. Meth. Engrg., 62 (2005), 774-797.

[10]

B. B. Bird, C. F. Curtiss, R. C. Armstrong and O. Hassager, Dynamics of polymeric liquids, in: Kinetic Theory, Vol 2, John Wiley & Sons, 1987.

[11]

B. Bognet, A. Leygue, F. Chinesta, A. Poitou and F. Bordeu, Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity, Computer Methods in Applied Mechanics and Engineering, 201 (2012), 1-12. doi: 10.1016/j.cma.2011.08.025.

[12]

B. Bognet, A. Leygue and F. Chinesta, Separated representations of 3D elastic solutions in shell geometries, Advanced Modelling and Simulation in Engineering Sciences, 1 (2014), p4, www.amses-journal.com/content/1/1/4. doi: 10.1186/2213-7467-1-4.

[13]

A. Bruno-Alfonso, L. Cabezas-Gomez and H. Aparecido-Navarro, Alternate treatments of jacobian singularities in polar coordinates within finite-difference schemes, World Journal of Modelling and Simulation, 8 (2012), 163-171.

[14]

J. Burkardt, M. Gunzburger and H.-Ch. Lee, POD and CVT-based reduced-order modeling of Navier-Stokes flows, Comput. Methods Appl. Mech. Engrg., 196 (2006), 337-355. doi: 10.1016/j.cma.2006.04.004.

[15]

E. Cancès, M. Defranceschi, W. Kutzelnigg, C. Le Bris and Y. Maday, Computational Quantum Chemistry: A primer, in Handbook of Numerical Analysis, Vol X, Elsevier, 2003.

[16]

F. Chinesta, A. Ammar, A. Leygue and R. Keunings, An overview of the Proper Generalized Decomposition with applications in computational rheology, Journal of Non Newtonian Fluid Mechanics, 166 (2011), 578-592. doi: 10.1016/j.jnnfm.2010.12.012.

[17]

F. Chinesta, P. Ladeveze and E. Cueto, A short review in model order reduction based on Proper Generalized Decomposition, Archives of Computational Methods in Engineering, 18 (2011), 395-404. doi: 10.1007/s11831-011-9064-7.

[18]

F. Chinesta, A. Leygue, F. Bordeu, J. V. Aguado, E. Cueto, D. Gonzalez, I. Alfaro, A. Ammar and A. Huerta, Parametric PGD based computational vademecum for efficient design, optimization and control, Archives of Computational Methods in Engineering, 20 (2013), 31-59. doi: 10.1007/s11831-013-9080-x.

[19]

F. Chinesta, A. Leygue, B. Bognet, Ch. Ghnatios, F. Poulhaon, F. Bordeu, A. Barasinski, A. Poitou, S. Chatel and S. Maison-Le-Poec, First steps towards an advanced simulation of composites manufacturing by automated tape placement, International Journal of Material Forming, 7 (2014), 81-92. doi: 10.1007/s12289-012-1112-9.

[20]

F. Chinesta, R. Keunings and A. Leygue, The Proper Generalized Decomposition for advanced numerical simulations. A primer, Springerbriefs, Springer, 2014. doi: 10.1007/978-3-319-02865-1.

[21]

A. Cimetiere, F. Delvare, M. Jaoua and F. Pons, Solution of the Cauchy problem using iterated Tikhonov regularization, Inverse Problems, 17 (2001), 553-570. doi: 10.1088/0266-5611/17/3/313.

[22]

A. Cimetiere, F. Delvare, M. Jaoua and F. Pons, An inversion method for harmonic functions reconstruction, International Journal of Thermal Sciences, 41 (2002), 509-516. doi: 10.1016/S1290-0729(02)01344-3.

[23]

Ch. Ghnatios, F. Chinesta, E. Cueto, A. Leygue, P. Breitkopf and P. Villon, Methodological approach to efficient modeling and optimization of thermal processes taking place in a die: Application to pultrusion, Composites Part A, 42 (2011), 1169-1178. doi: 10.1016/j.compositesa.2011.05.001.

[24]

Ch. Ghnatios, F. Masson, A. Huerta, E. Cueto, A. Leygue and F. Chinesta, Proper Generalized Decomposition based dynamic data-driven control of thermal processes, Computer Methods in Applied Mechanics and Engineering, 213 (2012), 29-41. doi: 10.1016/j.cma.2011.11.018.

[25]

Ch. Ghnatios, F. Chinesta et Ch. Binetruy, The squeeze flow of composite laminates,, International Journal of Material Forming, (). 

[26]

D. Gonzalez, A. Ammar, F. Chinesta and E. Cueto, Recent advances on the use of separated representations, International Journal for Numerical Methods in Engineering, 81 (2010), 637-659. doi: 10.1002/nme.2710.

[27]

D. Gonzalez, F. Masson, F. Poulhaon, A. Leygue, E. Cueto and F. Chinesta, Proper Generalized Decomposition based dynamic data-driven inverse identification, Mathematics and Computers in Simulation, 82 (2012), 1677-1695. doi: 10.1016/j.matcom.2012.04.001.

[28]

M. D. Gunzburger, J. S. Peterson and J. N. Shadid, Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data, Comput. Methods Appl. Mech. Engrg., 196 (2007), 1030-1047. doi: 10.1016/j.cma.2006.08.004.

[29]

P. Ladeveze, The large time increment method for the analyze of structures with nonlinear constitutive relation described by internal variables, Comptes Rendus Académie des Sciences Paris, 309 (1989), 1095-1099.

[30]

P. Ladevèze, J.-C. Passieux and D. Néron, The latin multiscale computational method and the proper generalized decomposition, Computer Methods In Applied Mechanics and Engineering, 199 (2010), 1287-1296. doi: 10.1016/j.cma.2009.06.023.

[31]

H. Lamari, A. Ammar, A. Leygue and F. Chinesta, On the solution of the multidimensional Langer's equation by using the Proper Generalized Decomposition Method for modeling phase transitions, Modelling and Simulation in Materials Science and Engineering, 20 (2012), 015007. doi: 10.1088/0965-0393/20/1/015007.

[32]

A. Leygue, F. Chinesta, M. Beringhier, T. L. Nguyen, J. C. Grandidier, F. Pasavento and B. Schrefler, Towards a framework for non-linear thermal models in shell domains, International Journal of Numerical Methods for Heat and Fluid Flow, 23 (2013), 55-73. doi: 10.1108/09615531311289105.

[33]

Y. Maday and E. M. Ronquist, A reduced-basis element method, C. R. Acad. Sci. Paris, Ser. I, 335 (2002), 195-200. doi: 10.1016/S1631-073X(02)02427-5.

[34]

Y. Maday, A. T. Patera and G. Turinici, A priori convergence theory for reduced-basis approximations of single-parametric elliptic partial differential equations, Journal of Scientific Computing, 17 (2002), 437-446. doi: 10.1023/A:1015145924517.

[35]

Y. Maday and E. M. Ronquist, The reduced basis element method: Application to a thermal fin problem, SIAM J. Sci. Comput., 26 (2004), 240-258. doi: 10.1137/S1064827502419932.

[36]

S. Niroomandi, I. Alfaro, E. Cueto and F. Chinesta, Accounting for large deformations in real-time simulations of soft tissues based on reduced order models, Computer Methods and Programs in Biomedicine, 105 (2012), 1-12.

[37]

A. Nouy, Proper Generalized Decompositions and separated representations for the numerical solution of high dimensional stochastic problems, Archives of Computational Methods in Engineering - State of the Art Reviews, 17 (2010), 403-434. doi: 10.1007/s11831-010-9054-1.

[38]

H. M. Park and D. H. Cho, The use of the Karhunen-Loève decomposition for the modelling of distributed parameter systems, Chem. Engineer. Science, 51 (1996), 81-98.

[39]

E. Pruliere, F. Chinesta and A. Ammar, On the deterministic solution of multidimensional parametric models by using the Proper Generalized Decomposition, Mathematics and Computers in Simulation, 81 (2010), 791-810. doi: 10.1016/j.matcom.2010.07.015.

[40]

G. Rozza, D. B. P. Huynh and A. T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations - application to transport and continuum mechanics, Archives of Computational Methods in Engineering, 15 (2008), 229-275. doi: 10.1007/s11831-008-9019-9.

[41]

D. Ryckelynck, L. Hermanns, F. Chinesta and E. Alarcon, An efficient a priori model reduction for boundary element models, Engineering Analysis with Boundary Elements, 29 (2005), 796-801. doi: 10.1016/j.enganabound.2005.04.003.

[42]

D. Ryckelynck, F. Chinesta, E. Cueto and A. Ammar, On the a priori model reduction: Overview and recent developments, Archives of Computational Methods in Engineering, State of the Art Reviews, 13 (2006), 91-128. doi: 10.1007/BF02905932.

[43]

F. Schmidt, N. Pirc, M. Mongeau and F. Chinesta, Efficient mould cooling optimization by using model reduction, International Journal of Material Forming, 4 (2011), 71-82.

[44]

K. Veroy and A. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: Rigorous reduced-basis a posteriori error bounds, Int. J. Numer. Meth. Fluids, 47 (2005), 773-788. doi: 10.1002/fld.867.

show all references

References:
[1]

A. Ammar, B. Mokdad, F. Chinesta and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids, Journal of Non-Newtonian Fluid Mechanics, 139 (2006), 153-176. doi: 10.1016/j.jnnfm.2006.07.007.

[2]

A. Ammar, D. Ryckelynck, F. Chinesta and R. Keunings, On the reduction of kinetic theory models related to finitely extensible dumbbells, Journal of Non-Newtonian Fluid Mechanics, 134 (2006), 136-147. doi: 10.1016/j.jnnfm.2006.01.007.

[3]

A. Ammar, B. Mokdad, F. Chinesta and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. Part II: Transient simulation using space-time separated representation, Journal of Non-Newtonian Fluid Mechanics, 144 (2007), 98-121.

[4]

A. Ammar, F. Chinesta and P. Joyot, The nanometric and micrometric scales of the structure and mechanics of materials revisited: An introduction to the challenges of fully deterministic numerical descriptions, International Journal for Multiscale Computational Engineering, 6/3 (2008), 191-213. doi: 10.1615/IntJMultCompEng.v6.i3.20.

[5]

A. Ammar, M. Normandin and F. Chinesta, Solving parametric complex fluids models in rheometric flows, Journal of Non-Newtonian Fluid Mechanics, 165 (2010), 1588-1601. doi: 10.1016/j.jnnfm.2010.08.006.

[6]

A. Ammar, E. Cueto and F. Chinesta, Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions, International Journal for Numerical Methods in Biomedical Engineering, 28 (2012), 960-973. doi: 10.1002/cnm.2476.

[7]

A. Ammar, A. Huerta, F. Chinesta, E. Cueto and A. Leygue, Parametric solutions involving geometry: A step towards efficient shape optimization, Computer Methods in Applied Mechanics and Engineering, 268 (2014), 178-193. doi: 10.1016/j.cma.2013.09.003.

[8]

N. Bellomo, Modeling Complex Living Systems, Birkhauser, 2008.

[9]

R. A. Bialecki, A. J. Kassab and A. Fic, Proper orthogonal decomposition and modal analysis for acceleration of transient FEM thermal analysis, Int. J. Numer. Meth. Engrg., 62 (2005), 774-797.

[10]

B. B. Bird, C. F. Curtiss, R. C. Armstrong and O. Hassager, Dynamics of polymeric liquids, in: Kinetic Theory, Vol 2, John Wiley & Sons, 1987.

[11]

B. Bognet, A. Leygue, F. Chinesta, A. Poitou and F. Bordeu, Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity, Computer Methods in Applied Mechanics and Engineering, 201 (2012), 1-12. doi: 10.1016/j.cma.2011.08.025.

[12]

B. Bognet, A. Leygue and F. Chinesta, Separated representations of 3D elastic solutions in shell geometries, Advanced Modelling and Simulation in Engineering Sciences, 1 (2014), p4, www.amses-journal.com/content/1/1/4. doi: 10.1186/2213-7467-1-4.

[13]

A. Bruno-Alfonso, L. Cabezas-Gomez and H. Aparecido-Navarro, Alternate treatments of jacobian singularities in polar coordinates within finite-difference schemes, World Journal of Modelling and Simulation, 8 (2012), 163-171.

[14]

J. Burkardt, M. Gunzburger and H.-Ch. Lee, POD and CVT-based reduced-order modeling of Navier-Stokes flows, Comput. Methods Appl. Mech. Engrg., 196 (2006), 337-355. doi: 10.1016/j.cma.2006.04.004.

[15]

E. Cancès, M. Defranceschi, W. Kutzelnigg, C. Le Bris and Y. Maday, Computational Quantum Chemistry: A primer, in Handbook of Numerical Analysis, Vol X, Elsevier, 2003.

[16]

F. Chinesta, A. Ammar, A. Leygue and R. Keunings, An overview of the Proper Generalized Decomposition with applications in computational rheology, Journal of Non Newtonian Fluid Mechanics, 166 (2011), 578-592. doi: 10.1016/j.jnnfm.2010.12.012.

[17]

F. Chinesta, P. Ladeveze and E. Cueto, A short review in model order reduction based on Proper Generalized Decomposition, Archives of Computational Methods in Engineering, 18 (2011), 395-404. doi: 10.1007/s11831-011-9064-7.

[18]

F. Chinesta, A. Leygue, F. Bordeu, J. V. Aguado, E. Cueto, D. Gonzalez, I. Alfaro, A. Ammar and A. Huerta, Parametric PGD based computational vademecum for efficient design, optimization and control, Archives of Computational Methods in Engineering, 20 (2013), 31-59. doi: 10.1007/s11831-013-9080-x.

[19]

F. Chinesta, A. Leygue, B. Bognet, Ch. Ghnatios, F. Poulhaon, F. Bordeu, A. Barasinski, A. Poitou, S. Chatel and S. Maison-Le-Poec, First steps towards an advanced simulation of composites manufacturing by automated tape placement, International Journal of Material Forming, 7 (2014), 81-92. doi: 10.1007/s12289-012-1112-9.

[20]

F. Chinesta, R. Keunings and A. Leygue, The Proper Generalized Decomposition for advanced numerical simulations. A primer, Springerbriefs, Springer, 2014. doi: 10.1007/978-3-319-02865-1.

[21]

A. Cimetiere, F. Delvare, M. Jaoua and F. Pons, Solution of the Cauchy problem using iterated Tikhonov regularization, Inverse Problems, 17 (2001), 553-570. doi: 10.1088/0266-5611/17/3/313.

[22]

A. Cimetiere, F. Delvare, M. Jaoua and F. Pons, An inversion method for harmonic functions reconstruction, International Journal of Thermal Sciences, 41 (2002), 509-516. doi: 10.1016/S1290-0729(02)01344-3.

[23]

Ch. Ghnatios, F. Chinesta, E. Cueto, A. Leygue, P. Breitkopf and P. Villon, Methodological approach to efficient modeling and optimization of thermal processes taking place in a die: Application to pultrusion, Composites Part A, 42 (2011), 1169-1178. doi: 10.1016/j.compositesa.2011.05.001.

[24]

Ch. Ghnatios, F. Masson, A. Huerta, E. Cueto, A. Leygue and F. Chinesta, Proper Generalized Decomposition based dynamic data-driven control of thermal processes, Computer Methods in Applied Mechanics and Engineering, 213 (2012), 29-41. doi: 10.1016/j.cma.2011.11.018.

[25]

Ch. Ghnatios, F. Chinesta et Ch. Binetruy, The squeeze flow of composite laminates,, International Journal of Material Forming, (). 

[26]

D. Gonzalez, A. Ammar, F. Chinesta and E. Cueto, Recent advances on the use of separated representations, International Journal for Numerical Methods in Engineering, 81 (2010), 637-659. doi: 10.1002/nme.2710.

[27]

D. Gonzalez, F. Masson, F. Poulhaon, A. Leygue, E. Cueto and F. Chinesta, Proper Generalized Decomposition based dynamic data-driven inverse identification, Mathematics and Computers in Simulation, 82 (2012), 1677-1695. doi: 10.1016/j.matcom.2012.04.001.

[28]

M. D. Gunzburger, J. S. Peterson and J. N. Shadid, Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data, Comput. Methods Appl. Mech. Engrg., 196 (2007), 1030-1047. doi: 10.1016/j.cma.2006.08.004.

[29]

P. Ladeveze, The large time increment method for the analyze of structures with nonlinear constitutive relation described by internal variables, Comptes Rendus Académie des Sciences Paris, 309 (1989), 1095-1099.

[30]

P. Ladevèze, J.-C. Passieux and D. Néron, The latin multiscale computational method and the proper generalized decomposition, Computer Methods In Applied Mechanics and Engineering, 199 (2010), 1287-1296. doi: 10.1016/j.cma.2009.06.023.

[31]

H. Lamari, A. Ammar, A. Leygue and F. Chinesta, On the solution of the multidimensional Langer's equation by using the Proper Generalized Decomposition Method for modeling phase transitions, Modelling and Simulation in Materials Science and Engineering, 20 (2012), 015007. doi: 10.1088/0965-0393/20/1/015007.

[32]

A. Leygue, F. Chinesta, M. Beringhier, T. L. Nguyen, J. C. Grandidier, F. Pasavento and B. Schrefler, Towards a framework for non-linear thermal models in shell domains, International Journal of Numerical Methods for Heat and Fluid Flow, 23 (2013), 55-73. doi: 10.1108/09615531311289105.

[33]

Y. Maday and E. M. Ronquist, A reduced-basis element method, C. R. Acad. Sci. Paris, Ser. I, 335 (2002), 195-200. doi: 10.1016/S1631-073X(02)02427-5.

[34]

Y. Maday, A. T. Patera and G. Turinici, A priori convergence theory for reduced-basis approximations of single-parametric elliptic partial differential equations, Journal of Scientific Computing, 17 (2002), 437-446. doi: 10.1023/A:1015145924517.

[35]

Y. Maday and E. M. Ronquist, The reduced basis element method: Application to a thermal fin problem, SIAM J. Sci. Comput., 26 (2004), 240-258. doi: 10.1137/S1064827502419932.

[36]

S. Niroomandi, I. Alfaro, E. Cueto and F. Chinesta, Accounting for large deformations in real-time simulations of soft tissues based on reduced order models, Computer Methods and Programs in Biomedicine, 105 (2012), 1-12.

[37]

A. Nouy, Proper Generalized Decompositions and separated representations for the numerical solution of high dimensional stochastic problems, Archives of Computational Methods in Engineering - State of the Art Reviews, 17 (2010), 403-434. doi: 10.1007/s11831-010-9054-1.

[38]

H. M. Park and D. H. Cho, The use of the Karhunen-Loève decomposition for the modelling of distributed parameter systems, Chem. Engineer. Science, 51 (1996), 81-98.

[39]

E. Pruliere, F. Chinesta and A. Ammar, On the deterministic solution of multidimensional parametric models by using the Proper Generalized Decomposition, Mathematics and Computers in Simulation, 81 (2010), 791-810. doi: 10.1016/j.matcom.2010.07.015.

[40]

G. Rozza, D. B. P. Huynh and A. T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations - application to transport and continuum mechanics, Archives of Computational Methods in Engineering, 15 (2008), 229-275. doi: 10.1007/s11831-008-9019-9.

[41]

D. Ryckelynck, L. Hermanns, F. Chinesta and E. Alarcon, An efficient a priori model reduction for boundary element models, Engineering Analysis with Boundary Elements, 29 (2005), 796-801. doi: 10.1016/j.enganabound.2005.04.003.

[42]

D. Ryckelynck, F. Chinesta, E. Cueto and A. Ammar, On the a priori model reduction: Overview and recent developments, Archives of Computational Methods in Engineering, State of the Art Reviews, 13 (2006), 91-128. doi: 10.1007/BF02905932.

[43]

F. Schmidt, N. Pirc, M. Mongeau and F. Chinesta, Efficient mould cooling optimization by using model reduction, International Journal of Material Forming, 4 (2011), 71-82.

[44]

K. Veroy and A. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: Rigorous reduced-basis a posteriori error bounds, Int. J. Numer. Meth. Fluids, 47 (2005), 773-788. doi: 10.1002/fld.867.

[1]

Mojtaba F. Fathi, Ahmadreza Baghaie, Ali Bakhshinejad, Raphael H. Sacho, Roshan M. D'Souza. Time-resolved denoising using model order reduction, dynamic mode decomposition, and kalman filter and smoother. Journal of Computational Dynamics, 2020, 7 (2) : 469-487. doi: 10.3934/jcd.2020019

[2]

Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control and Related Fields, 2021, 11 (3) : 579-599. doi: 10.3934/mcrf.2021013

[3]

Kota Kumazaki, Akio Ito, Masahiro Kubo. Generalized solutions of a non-isothermal phase separation model. Conference Publications, 2009, 2009 (Special) : 476-485. doi: 10.3934/proc.2009.2009.476

[4]

Andrei Korobeinikov, Aleksei Archibasov, Vladimir Sobolev. Order reduction for an RNA virus evolution model. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1007-1016. doi: 10.3934/mbe.2015.12.1007

[5]

Martin Redmann, Peter Benner. Approximation and model order reduction for second order systems with Levy-noise. Conference Publications, 2015, 2015 (special) : 945-953. doi: 10.3934/proc.2015.0945

[6]

Hengrui Luo, Alice Patania, Jisu Kim, Mikael Vejdemo-Johansson. Generalized penalty for circular coordinate representation. Foundations of Data Science, 2021, 3 (4) : 729-767. doi: 10.3934/fods.2021024

[7]

Meixin Xiong, Liuhong Chen, Ju Ming, Jaemin Shin. Accelerating the Bayesian inference of inverse problems by using data-driven compressive sensing method based on proper orthogonal decomposition. Electronic Research Archive, 2021, 29 (5) : 3383-3403. doi: 10.3934/era.2021044

[8]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3043-3054. doi: 10.3934/dcdss.2020463

[9]

L. Bakker. A reducible representation of the generalized symmetry group of a quasiperiodic flow. Conference Publications, 2003, 2003 (Special) : 68-77. doi: 10.3934/proc.2003.2003.68

[10]

Pavel Krejčí, Songmu Zheng. Pointwise asymptotic convergence of solutions for a phase separation model. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 1-18. doi: 10.3934/dcds.2006.16.1

[11]

Roland Pulch. Stability preservation in Galerkin-type projection-based model order reduction. Numerical Algebra, Control and Optimization, 2019, 9 (1) : 23-44. doi: 10.3934/naco.2019003

[12]

Martin Redmann, Melina A. Freitag. Balanced model order reduction for linear random dynamical systems driven by Lévy noise. Journal of Computational Dynamics, 2018, 5 (1&2) : 33-59. doi: 10.3934/jcd.2018002

[13]

Kun Li, Ting-Zhu Huang, Liang Li, Ying Zhao, Stéphane Lanteri. A non-intrusive model order reduction approach for parameterized time-domain Maxwell's equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022084

[14]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems and Imaging, 2021, 15 (1) : 159-183. doi: 10.3934/ipi.2020076

[15]

Rentsen Enkhbat, Evgeniya A. Finkelstein, Anton S. Anikin, Alexandr Yu. Gornov. Global optimization reduction of generalized Malfatti's problem. Numerical Algebra, Control and Optimization, 2017, 7 (2) : 211-221. doi: 10.3934/naco.2017015

[16]

Jing Li, Panos Stinis. Model reduction for a power grid model. Journal of Computational Dynamics, 2022, 9 (1) : 1-26. doi: 10.3934/jcd.2021019

[17]

Yunbai Cao, Chanwoo Kim. Glassey-Strauss representation of Vlasov-Maxwell systems in a Half Space. Kinetic and Related Models, 2022, 15 (3) : 385-401. doi: 10.3934/krm.2021034

[18]

Ming Huang, Cong Cheng, Yang Li, Zun Quan Xia. The space decomposition method for the sum of nonlinear convex maximum eigenvalues and its applications. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1885-1905. doi: 10.3934/jimo.2019034

[19]

Liming Ling. The algebraic representation for high order solution of Sasa-Satsuma equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1975-2010. doi: 10.3934/dcdss.2016081

[20]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (223)
  • HTML views (0)
  • Cited by (9)

[Back to Top]