April  2016, 9(2): 501-527. doi: 10.3934/dcdss.2016009

On the equilibria and qualitative dynamics of a forced nonlinear oscillator with contact and friction

1. 

Laboratoire de Mécanique et d'Acoustique, LMA, CNRS, UPR 7051, Aix-Marseille Univ., Centrale Marseille, F-13402 Marseille Cedex 20, France, France

Received  December 2014 Revised  October 2015 Published  March 2016

After previous works related to the equilibrium states, this paper goes deeper into the study of the effect of coupling between smooth and non-smooth non-linearities on the qualitative behavior of low dimensional dynamical systems. The non-smooth non-linearity is due to non-regularized unilateral contact and Coulomb friction while the smooth one is due to large strains of a simple mass spring system, which lead to a nonlinear restoring force. The main qualitative differences with the case of a linear restoring force are due to the shape of the set of equilibrium states.
Citation: Alain Léger, Elaine Pratt. On the equilibria and qualitative dynamics of a forced nonlinear oscillator with contact and friction. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 501-527. doi: 10.3934/dcdss.2016009
References:
[1]

S. Basseville, A. Léger and E. Pratt, Investigation of the equilibrium states and their stability for a simple model with unilateral contact and Coulomb friction,, Arch. Appl. Mech., 73 (2003), 409. doi: 10.1007/s00419-003-0300-y.

[2]

Q. J. Cao, M. Wiercigroch, E. Pavvlovskaia, C. Grebogi, J. Thompson, An archetypal oscillator for smooth and discontinuous dynamics,, Phys. Review, 74 (2006). doi: 10.1103/PhysRevE.74.046218.

[3]

Q. J. Cao, A. Léger and Z. X. Li, The equilibrium stability of a smooth to discontinous oscillator with dry friction,, J. of Computational and Nonlinear Dynamics, (2013).

[4]

A. Charles and P. Ballard, Existence and uniqueness of solution to dynamical unilateral contact problems with Coulomb friction: the case of a collection of points,, Mathematical Modelling and Numerical Analysis, 48 (2014), 1. doi: 10.1051/m2an/2013092.

[5]

A. Cimetière and A. Léger, Some problems about elastic-plastic post-buckling,, Int. J. Solids Structures, 32 (1996), 1519.

[6]

M. Jean, The nonsmooth contact dynamics method,, Computer Methods Appl. Mech. Engn, 177 (1999), 235. doi: 10.1016/S0045-7825(98)00383-1.

[7]

A. Klarbring, Examples of nonuniqueness and nonexistence of solutions to quasistatic contact problems with friction,, Ing. Arch., 60 (1990), 529.

[8]

A. Léger and E. Pratt, Qualitative analysis of a forced nonsmooth oscillator with contact and friction,, Annals of Solid and Structural Mechanics, 2 (2011), 1.

[9]

A. Léger, E. Pratt and Q. J. Cao, A fully nonlinear oscillator with contact and friction,, Nonlinear Dynamics, 70 (2012), 511. doi: 10.1007/s11071-012-0471-6.

[10]

J. J. Moreau, Unilateral contact and dry friction in finite freedom dynamics,, in Nonsmooth Mechanics and Applications (eds. J. J. Moreau and P. D. Panagiotopoulos), (1988), 1. doi: 10.1007/978-3-7091-2624-0_1.

show all references

References:
[1]

S. Basseville, A. Léger and E. Pratt, Investigation of the equilibrium states and their stability for a simple model with unilateral contact and Coulomb friction,, Arch. Appl. Mech., 73 (2003), 409. doi: 10.1007/s00419-003-0300-y.

[2]

Q. J. Cao, M. Wiercigroch, E. Pavvlovskaia, C. Grebogi, J. Thompson, An archetypal oscillator for smooth and discontinuous dynamics,, Phys. Review, 74 (2006). doi: 10.1103/PhysRevE.74.046218.

[3]

Q. J. Cao, A. Léger and Z. X. Li, The equilibrium stability of a smooth to discontinous oscillator with dry friction,, J. of Computational and Nonlinear Dynamics, (2013).

[4]

A. Charles and P. Ballard, Existence and uniqueness of solution to dynamical unilateral contact problems with Coulomb friction: the case of a collection of points,, Mathematical Modelling and Numerical Analysis, 48 (2014), 1. doi: 10.1051/m2an/2013092.

[5]

A. Cimetière and A. Léger, Some problems about elastic-plastic post-buckling,, Int. J. Solids Structures, 32 (1996), 1519.

[6]

M. Jean, The nonsmooth contact dynamics method,, Computer Methods Appl. Mech. Engn, 177 (1999), 235. doi: 10.1016/S0045-7825(98)00383-1.

[7]

A. Klarbring, Examples of nonuniqueness and nonexistence of solutions to quasistatic contact problems with friction,, Ing. Arch., 60 (1990), 529.

[8]

A. Léger and E. Pratt, Qualitative analysis of a forced nonsmooth oscillator with contact and friction,, Annals of Solid and Structural Mechanics, 2 (2011), 1.

[9]

A. Léger, E. Pratt and Q. J. Cao, A fully nonlinear oscillator with contact and friction,, Nonlinear Dynamics, 70 (2012), 511. doi: 10.1007/s11071-012-0471-6.

[10]

J. J. Moreau, Unilateral contact and dry friction in finite freedom dynamics,, in Nonsmooth Mechanics and Applications (eds. J. J. Moreau and P. D. Panagiotopoulos), (1988), 1. doi: 10.1007/978-3-7091-2624-0_1.

[1]

Rafael del Rio, Mikhail Kudryavtsev, Luis O. Silva. Inverse problems for Jacobi operators III: Mass-spring perturbations of semi-infinite systems. Inverse Problems & Imaging, 2012, 6 (4) : 599-621. doi: 10.3934/ipi.2012.6.599

[2]

Philippe Pécol, Pierre Argoul, Stefano Dal Pont, Silvano Erlicher. The non-smooth view for contact dynamics by Michel Frémond extended to the modeling of crowd movements. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 547-565. doi: 10.3934/dcdss.2013.6.547

[3]

Gero Friesecke, Karsten Matthies. Geometric solitary waves in a 2D mass-spring lattice. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 105-144. doi: 10.3934/dcdsb.2003.3.105

[4]

Yanni Xiao, Tingting Zhao, Sanyi Tang. Dynamics of an infectious diseases with media/psychology induced non-smooth incidence. Mathematical Biosciences & Engineering, 2013, 10 (2) : 445-461. doi: 10.3934/mbe.2013.10.445

[5]

Hongwei Lou, Junjie Wen, Yashan Xu. Time optimal control problems for some non-smooth systems. Mathematical Control & Related Fields, 2014, 4 (3) : 289-314. doi: 10.3934/mcrf.2014.4.289

[6]

Mikhail I. Belishev, Aleksei F. Vakulenko. Non-smooth unobservable states in control problem for the wave equation in $\mathbb{R}^3$. Evolution Equations & Control Theory, 2014, 3 (2) : 247-256. doi: 10.3934/eect.2014.3.247

[7]

Paul Glendinning. Non-smooth pitchfork bifurcations. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 457-464. doi: 10.3934/dcdsb.2004.4.457

[8]

Luis Bayón, Jose Maria Grau, Maria del Mar Ruiz, Pedro Maria Suárez. A hydrothermal problem with non-smooth Lagrangian. Journal of Industrial & Management Optimization, 2014, 10 (3) : 761-776. doi: 10.3934/jimo.2014.10.761

[9]

Alessandro Colombo, Nicoletta Del Buono, Luciano Lopez, Alessandro Pugliese. Computational techniques to locate crossing/sliding regions and their sets of attraction in non-smooth dynamical systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2911-2934. doi: 10.3934/dcdsb.2018166

[10]

Peter Giesl. Necessary condition for the basin of attraction of a periodic orbit in non-smooth periodic systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 355-373. doi: 10.3934/dcds.2007.18.355

[11]

Giuseppe Tomassetti. Smooth and non-smooth regularizations of the nonlinear diffusion equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1519-1537. doi: 10.3934/dcdss.2017078

[12]

Nicola Gigli, Sunra Mosconi. The Abresch-Gromoll inequality in a non-smooth setting. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1481-1509. doi: 10.3934/dcds.2014.34.1481

[13]

Constantin Christof, Christian Meyer, Stephan Walther, Christian Clason. Optimal control of a non-smooth semilinear elliptic equation. Mathematical Control & Related Fields, 2018, 8 (1) : 247-276. doi: 10.3934/mcrf.2018011

[14]

Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187

[15]

Jianhua Huang, Wenxian Shen. Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 855-882. doi: 10.3934/dcds.2009.24.855

[16]

Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109

[17]

Deepak Singh, Bilal Ahmad Dar, Do Sang Kim. Sufficiency and duality in non-smooth interval valued programming problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 647-665. doi: 10.3934/jimo.2018063

[18]

Nelly Point, Silvano Erlicher. Pseudo-potentials and bipotential: A constructive procedure for non-associated plasticity and unilateral contact. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 567-590. doi: 10.3934/dcdss.2013.6.567

[19]

Ivan Werner. Equilibrium states and invariant measures for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1285-1326. doi: 10.3934/dcds.2015.35.1285

[20]

Andaluzia Matei, Mircea Sofonea. Dual formulation of a viscoplastic contact problem with unilateral constraint. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1587-1598. doi: 10.3934/dcdss.2013.6.1587

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]