April  2016, 9(2): 501-527. doi: 10.3934/dcdss.2016009

On the equilibria and qualitative dynamics of a forced nonlinear oscillator with contact and friction

1. 

Laboratoire de Mécanique et d'Acoustique, LMA, CNRS, UPR 7051, Aix-Marseille Univ., Centrale Marseille, F-13402 Marseille Cedex 20, France, France

Received  December 2014 Revised  October 2015 Published  March 2016

After previous works related to the equilibrium states, this paper goes deeper into the study of the effect of coupling between smooth and non-smooth non-linearities on the qualitative behavior of low dimensional dynamical systems. The non-smooth non-linearity is due to non-regularized unilateral contact and Coulomb friction while the smooth one is due to large strains of a simple mass spring system, which lead to a nonlinear restoring force. The main qualitative differences with the case of a linear restoring force are due to the shape of the set of equilibrium states.
Citation: Alain Léger, Elaine Pratt. On the equilibria and qualitative dynamics of a forced nonlinear oscillator with contact and friction. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 501-527. doi: 10.3934/dcdss.2016009
References:
[1]

S. Basseville, A. Léger and E. Pratt, Investigation of the equilibrium states and their stability for a simple model with unilateral contact and Coulomb friction,, Arch. Appl. Mech., 73 (2003), 409.  doi: 10.1007/s00419-003-0300-y.  Google Scholar

[2]

Q. J. Cao, M. Wiercigroch, E. Pavvlovskaia, C. Grebogi, J. Thompson, An archetypal oscillator for smooth and discontinuous dynamics,, Phys. Review, 74 (2006).  doi: 10.1103/PhysRevE.74.046218.  Google Scholar

[3]

Q. J. Cao, A. Léger and Z. X. Li, The equilibrium stability of a smooth to discontinous oscillator with dry friction,, J. of Computational and Nonlinear Dynamics, (2013).   Google Scholar

[4]

A. Charles and P. Ballard, Existence and uniqueness of solution to dynamical unilateral contact problems with Coulomb friction: the case of a collection of points,, Mathematical Modelling and Numerical Analysis, 48 (2014), 1.  doi: 10.1051/m2an/2013092.  Google Scholar

[5]

A. Cimetière and A. Léger, Some problems about elastic-plastic post-buckling,, Int. J. Solids Structures, 32 (1996), 1519.   Google Scholar

[6]

M. Jean, The nonsmooth contact dynamics method,, Computer Methods Appl. Mech. Engn, 177 (1999), 235.  doi: 10.1016/S0045-7825(98)00383-1.  Google Scholar

[7]

A. Klarbring, Examples of nonuniqueness and nonexistence of solutions to quasistatic contact problems with friction,, Ing. Arch., 60 (1990), 529.   Google Scholar

[8]

A. Léger and E. Pratt, Qualitative analysis of a forced nonsmooth oscillator with contact and friction,, Annals of Solid and Structural Mechanics, 2 (2011), 1.   Google Scholar

[9]

A. Léger, E. Pratt and Q. J. Cao, A fully nonlinear oscillator with contact and friction,, Nonlinear Dynamics, 70 (2012), 511.  doi: 10.1007/s11071-012-0471-6.  Google Scholar

[10]

J. J. Moreau, Unilateral contact and dry friction in finite freedom dynamics,, in Nonsmooth Mechanics and Applications (eds. J. J. Moreau and P. D. Panagiotopoulos), (1988), 1.  doi: 10.1007/978-3-7091-2624-0_1.  Google Scholar

show all references

References:
[1]

S. Basseville, A. Léger and E. Pratt, Investigation of the equilibrium states and their stability for a simple model with unilateral contact and Coulomb friction,, Arch. Appl. Mech., 73 (2003), 409.  doi: 10.1007/s00419-003-0300-y.  Google Scholar

[2]

Q. J. Cao, M. Wiercigroch, E. Pavvlovskaia, C. Grebogi, J. Thompson, An archetypal oscillator for smooth and discontinuous dynamics,, Phys. Review, 74 (2006).  doi: 10.1103/PhysRevE.74.046218.  Google Scholar

[3]

Q. J. Cao, A. Léger and Z. X. Li, The equilibrium stability of a smooth to discontinous oscillator with dry friction,, J. of Computational and Nonlinear Dynamics, (2013).   Google Scholar

[4]

A. Charles and P. Ballard, Existence and uniqueness of solution to dynamical unilateral contact problems with Coulomb friction: the case of a collection of points,, Mathematical Modelling and Numerical Analysis, 48 (2014), 1.  doi: 10.1051/m2an/2013092.  Google Scholar

[5]

A. Cimetière and A. Léger, Some problems about elastic-plastic post-buckling,, Int. J. Solids Structures, 32 (1996), 1519.   Google Scholar

[6]

M. Jean, The nonsmooth contact dynamics method,, Computer Methods Appl. Mech. Engn, 177 (1999), 235.  doi: 10.1016/S0045-7825(98)00383-1.  Google Scholar

[7]

A. Klarbring, Examples of nonuniqueness and nonexistence of solutions to quasistatic contact problems with friction,, Ing. Arch., 60 (1990), 529.   Google Scholar

[8]

A. Léger and E. Pratt, Qualitative analysis of a forced nonsmooth oscillator with contact and friction,, Annals of Solid and Structural Mechanics, 2 (2011), 1.   Google Scholar

[9]

A. Léger, E. Pratt and Q. J. Cao, A fully nonlinear oscillator with contact and friction,, Nonlinear Dynamics, 70 (2012), 511.  doi: 10.1007/s11071-012-0471-6.  Google Scholar

[10]

J. J. Moreau, Unilateral contact and dry friction in finite freedom dynamics,, in Nonsmooth Mechanics and Applications (eds. J. J. Moreau and P. D. Panagiotopoulos), (1988), 1.  doi: 10.1007/978-3-7091-2624-0_1.  Google Scholar

[1]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[2]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[3]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[4]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[5]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[6]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[7]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[8]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[9]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[10]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[11]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[12]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[13]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[14]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[15]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[16]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[17]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[18]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[19]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[20]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]