• Previous Article
    Analysis of an iterative scheme of fractional steps type associated to the nonlinear phase-field equation with non-homogeneous dynamic boundary conditions
  • DCDS-S Home
  • This Issue
  • Next Article
    On the equilibria and qualitative dynamics of a forced nonlinear oscillator with contact and friction
April  2016, 9(2): 529-536. doi: 10.3934/dcdss.2016010

Kinematical structural stability

1. 

IBISC, UFRST-UEVE, 40, rue du Pelvoux CE 1455 Courcouronnes, 91020 Evry Cedex, France

2. 

South Britain University, LIMATB -UBS -Lorient Research Center, Rue de Saint Maudé - BP 92116, 56321 Lorient cedex, France, France, France

Received  November 2014 Revised  November 2015 Published  March 2016

This paper gives an overview of our results obtained from 2009 until 2014 about paradoxical stability properties of non conservative systems which lead to the concept of Kinematical Structural Stability (Ki.s.s.). Due to Fischer-Courant results, this ki.s.s. is universal for conservative systems whereas new interesting situations may arise for non conservative ones. A remarkable algebraic property of the symmetric part of linear operators may generalize this result for divergence stability but leading only to a conditional ki.s.s. By duality, the concept of geometric degree of nonconservativity is highlighting. Paradigmatic examples of Ziegler systems illustrate the general results and their effectiveness.
Citation: Jean Lerbet, Noël Challamel, François Nicot, Félix Darve. Kinematical structural stability. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 529-536. doi: 10.3934/dcdss.2016010
References:
[1]

D. Bigoni and G. Noselli, Experimental evidence of flutter and divergence instabilities induced by dry friction,, Journal of the Mechanics and Physics of Solids, 59 (2011), 2208.  doi: 10.1016/j.jmps.2011.05.007.  Google Scholar

[2]

V. V. Bolotin, Non-conservative Problems of the Theory of Elastic Stability,, Pergamon Press, (1963).   Google Scholar

[3]

N. Challamel, F. Nicot, J. Lerbet and F. Darve, Stability of non-conservative elastic structures under additional kinematics constraints,, Engineering Structures, 32 (2010), 3086.  doi: 10.1016/j.engstruct.2010.05.027.  Google Scholar

[4]

K. E. Gustafson and D. K. M. Rao, Numerical Range. The field of Values of Linear Operators and Matrices,, Universitext, (1997).  doi: 10.1007/978-1-4613-8498-4.  Google Scholar

[5]

R. Hill, A general theory of uniqueness and stability in elastic-plastic solids,, Journal of the Mechanics and Physics of Solids, 6 (1958), 236.  doi: 10.1016/0022-5096(58)90029-2.  Google Scholar

[6]

R. Hill, Some basic principles in the mechanics of solids without a natural time,, J. Mech. Phys. Solids, 7 (1959), 209.  doi: 10.1016/0022-5096(59)90007-9.  Google Scholar

[7]

O. N. Kirillov and F. Verhulst, Paradoxes of dissipation-induced destabilization or who opened Withney's umbrella?,, Z. Angew.Math. Mech., 90 (2010), 462.  doi: 10.1002/zamm.200900315.  Google Scholar

[8]

J. Lerbet, M. Aldowaji, N. Challamel, F. Nicot, F. Prunier and F. Darve, P-positive definite matrices and stability of nonconservative systems,, Z. Angew. Math. Mech., 92 (2012), 409.  doi: 10.1002/zamm.201100055.  Google Scholar

[9]

J. Lerbet, M. Aldowaji, N. Challamel, F. Nicot, O. Kirillov and F. Darve, Geometric degree of nonconservativity,, Math. and Mech. of Complex Systems, 2 (2014), 123.  doi: 10.2140/memocs.2014.2.123.  Google Scholar

[10]

T. Tarnai, Paradoxical behaviour of vibrating systems challenging Rayleigh's theorem,, 21st International Congress of Theoretical and Applied Mechanics, (2004).   Google Scholar

[11]

J. M. T. Thompson, 'Paradoxical' mechanics under fluid flow,, Nature, 296 (1982), 135.  doi: 10.1038/296135a0.  Google Scholar

show all references

References:
[1]

D. Bigoni and G. Noselli, Experimental evidence of flutter and divergence instabilities induced by dry friction,, Journal of the Mechanics and Physics of Solids, 59 (2011), 2208.  doi: 10.1016/j.jmps.2011.05.007.  Google Scholar

[2]

V. V. Bolotin, Non-conservative Problems of the Theory of Elastic Stability,, Pergamon Press, (1963).   Google Scholar

[3]

N. Challamel, F. Nicot, J. Lerbet and F. Darve, Stability of non-conservative elastic structures under additional kinematics constraints,, Engineering Structures, 32 (2010), 3086.  doi: 10.1016/j.engstruct.2010.05.027.  Google Scholar

[4]

K. E. Gustafson and D. K. M. Rao, Numerical Range. The field of Values of Linear Operators and Matrices,, Universitext, (1997).  doi: 10.1007/978-1-4613-8498-4.  Google Scholar

[5]

R. Hill, A general theory of uniqueness and stability in elastic-plastic solids,, Journal of the Mechanics and Physics of Solids, 6 (1958), 236.  doi: 10.1016/0022-5096(58)90029-2.  Google Scholar

[6]

R. Hill, Some basic principles in the mechanics of solids without a natural time,, J. Mech. Phys. Solids, 7 (1959), 209.  doi: 10.1016/0022-5096(59)90007-9.  Google Scholar

[7]

O. N. Kirillov and F. Verhulst, Paradoxes of dissipation-induced destabilization or who opened Withney's umbrella?,, Z. Angew.Math. Mech., 90 (2010), 462.  doi: 10.1002/zamm.200900315.  Google Scholar

[8]

J. Lerbet, M. Aldowaji, N. Challamel, F. Nicot, F. Prunier and F. Darve, P-positive definite matrices and stability of nonconservative systems,, Z. Angew. Math. Mech., 92 (2012), 409.  doi: 10.1002/zamm.201100055.  Google Scholar

[9]

J. Lerbet, M. Aldowaji, N. Challamel, F. Nicot, O. Kirillov and F. Darve, Geometric degree of nonconservativity,, Math. and Mech. of Complex Systems, 2 (2014), 123.  doi: 10.2140/memocs.2014.2.123.  Google Scholar

[10]

T. Tarnai, Paradoxical behaviour of vibrating systems challenging Rayleigh's theorem,, 21st International Congress of Theoretical and Applied Mechanics, (2004).   Google Scholar

[11]

J. M. T. Thompson, 'Paradoxical' mechanics under fluid flow,, Nature, 296 (1982), 135.  doi: 10.1038/296135a0.  Google Scholar

[1]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[2]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[3]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[4]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[5]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[6]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[7]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[8]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[9]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[10]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[11]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[12]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[14]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[15]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[16]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[17]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[18]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[19]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[20]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (5)

[Back to Top]