• Previous Article
    Analysis of an iterative scheme of fractional steps type associated to the nonlinear phase-field equation with non-homogeneous dynamic boundary conditions
  • DCDS-S Home
  • This Issue
  • Next Article
    On the equilibria and qualitative dynamics of a forced nonlinear oscillator with contact and friction
April  2016, 9(2): 529-536. doi: 10.3934/dcdss.2016010

Kinematical structural stability

1. 

IBISC, UFRST-UEVE, 40, rue du Pelvoux CE 1455 Courcouronnes, 91020 Evry Cedex, France

2. 

South Britain University, LIMATB -UBS -Lorient Research Center, Rue de Saint Maudé - BP 92116, 56321 Lorient cedex, France, France, France

Received  November 2014 Revised  November 2015 Published  March 2016

This paper gives an overview of our results obtained from 2009 until 2014 about paradoxical stability properties of non conservative systems which lead to the concept of Kinematical Structural Stability (Ki.s.s.). Due to Fischer-Courant results, this ki.s.s. is universal for conservative systems whereas new interesting situations may arise for non conservative ones. A remarkable algebraic property of the symmetric part of linear operators may generalize this result for divergence stability but leading only to a conditional ki.s.s. By duality, the concept of geometric degree of nonconservativity is highlighting. Paradigmatic examples of Ziegler systems illustrate the general results and their effectiveness.
Citation: Jean Lerbet, Noël Challamel, François Nicot, Félix Darve. Kinematical structural stability. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 529-536. doi: 10.3934/dcdss.2016010
References:
[1]

D. Bigoni and G. Noselli, Experimental evidence of flutter and divergence instabilities induced by dry friction,, Journal of the Mechanics and Physics of Solids, 59 (2011), 2208. doi: 10.1016/j.jmps.2011.05.007. Google Scholar

[2]

V. V. Bolotin, Non-conservative Problems of the Theory of Elastic Stability,, Pergamon Press, (1963). Google Scholar

[3]

N. Challamel, F. Nicot, J. Lerbet and F. Darve, Stability of non-conservative elastic structures under additional kinematics constraints,, Engineering Structures, 32 (2010), 3086. doi: 10.1016/j.engstruct.2010.05.027. Google Scholar

[4]

K. E. Gustafson and D. K. M. Rao, Numerical Range. The field of Values of Linear Operators and Matrices,, Universitext, (1997). doi: 10.1007/978-1-4613-8498-4. Google Scholar

[5]

R. Hill, A general theory of uniqueness and stability in elastic-plastic solids,, Journal of the Mechanics and Physics of Solids, 6 (1958), 236. doi: 10.1016/0022-5096(58)90029-2. Google Scholar

[6]

R. Hill, Some basic principles in the mechanics of solids without a natural time,, J. Mech. Phys. Solids, 7 (1959), 209. doi: 10.1016/0022-5096(59)90007-9. Google Scholar

[7]

O. N. Kirillov and F. Verhulst, Paradoxes of dissipation-induced destabilization or who opened Withney's umbrella?,, Z. Angew.Math. Mech., 90 (2010), 462. doi: 10.1002/zamm.200900315. Google Scholar

[8]

J. Lerbet, M. Aldowaji, N. Challamel, F. Nicot, F. Prunier and F. Darve, P-positive definite matrices and stability of nonconservative systems,, Z. Angew. Math. Mech., 92 (2012), 409. doi: 10.1002/zamm.201100055. Google Scholar

[9]

J. Lerbet, M. Aldowaji, N. Challamel, F. Nicot, O. Kirillov and F. Darve, Geometric degree of nonconservativity,, Math. and Mech. of Complex Systems, 2 (2014), 123. doi: 10.2140/memocs.2014.2.123. Google Scholar

[10]

T. Tarnai, Paradoxical behaviour of vibrating systems challenging Rayleigh's theorem,, 21st International Congress of Theoretical and Applied Mechanics, (2004). Google Scholar

[11]

J. M. T. Thompson, 'Paradoxical' mechanics under fluid flow,, Nature, 296 (1982), 135. doi: 10.1038/296135a0. Google Scholar

show all references

References:
[1]

D. Bigoni and G. Noselli, Experimental evidence of flutter and divergence instabilities induced by dry friction,, Journal of the Mechanics and Physics of Solids, 59 (2011), 2208. doi: 10.1016/j.jmps.2011.05.007. Google Scholar

[2]

V. V. Bolotin, Non-conservative Problems of the Theory of Elastic Stability,, Pergamon Press, (1963). Google Scholar

[3]

N. Challamel, F. Nicot, J. Lerbet and F. Darve, Stability of non-conservative elastic structures under additional kinematics constraints,, Engineering Structures, 32 (2010), 3086. doi: 10.1016/j.engstruct.2010.05.027. Google Scholar

[4]

K. E. Gustafson and D. K. M. Rao, Numerical Range. The field of Values of Linear Operators and Matrices,, Universitext, (1997). doi: 10.1007/978-1-4613-8498-4. Google Scholar

[5]

R. Hill, A general theory of uniqueness and stability in elastic-plastic solids,, Journal of the Mechanics and Physics of Solids, 6 (1958), 236. doi: 10.1016/0022-5096(58)90029-2. Google Scholar

[6]

R. Hill, Some basic principles in the mechanics of solids without a natural time,, J. Mech. Phys. Solids, 7 (1959), 209. doi: 10.1016/0022-5096(59)90007-9. Google Scholar

[7]

O. N. Kirillov and F. Verhulst, Paradoxes of dissipation-induced destabilization or who opened Withney's umbrella?,, Z. Angew.Math. Mech., 90 (2010), 462. doi: 10.1002/zamm.200900315. Google Scholar

[8]

J. Lerbet, M. Aldowaji, N. Challamel, F. Nicot, F. Prunier and F. Darve, P-positive definite matrices and stability of nonconservative systems,, Z. Angew. Math. Mech., 92 (2012), 409. doi: 10.1002/zamm.201100055. Google Scholar

[9]

J. Lerbet, M. Aldowaji, N. Challamel, F. Nicot, O. Kirillov and F. Darve, Geometric degree of nonconservativity,, Math. and Mech. of Complex Systems, 2 (2014), 123. doi: 10.2140/memocs.2014.2.123. Google Scholar

[10]

T. Tarnai, Paradoxical behaviour of vibrating systems challenging Rayleigh's theorem,, 21st International Congress of Theoretical and Applied Mechanics, (2004). Google Scholar

[11]

J. M. T. Thompson, 'Paradoxical' mechanics under fluid flow,, Nature, 296 (1982), 135. doi: 10.1038/296135a0. Google Scholar

[1]

M. Euler, N. Euler, M. C. Nucci. On nonlocal symmetries generated by recursion operators: Second-order evolution equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4239-4247. doi: 10.3934/dcds.2017181

[2]

Yi Zhang, Yong Jiang, Liwei Zhang, Jiangzhong Zhang. A perturbation approach for an inverse linear second-order cone programming. Journal of Industrial & Management Optimization, 2013, 9 (1) : 171-189. doi: 10.3934/jimo.2013.9.171

[3]

Guoshan Zhang, Peizhao Yu. Lyapunov method for stability of descriptor second-order and high-order systems. Journal of Industrial & Management Optimization, 2018, 14 (2) : 673-686. doi: 10.3934/jimo.2017068

[4]

Gábor Kiss, Bernd Krauskopf. Stability implications of delay distribution for first-order and second-order systems. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 327-345. doi: 10.3934/dcdsb.2010.13.327

[5]

Hongwei Lou. Second-order necessary/sufficient conditions for optimal control problems in the absence of linear structure. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1445-1464. doi: 10.3934/dcdsb.2010.14.1445

[6]

Qi Hong, Jialing Wang, Yuezheng Gong. Second-order linear structure-preserving modified finite volume schemes for the regularized long wave equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6445-6464. doi: 10.3934/dcdsb.2019146

[7]

José F. Cariñena, Javier de Lucas Araujo. Superposition rules and second-order Riccati equations. Journal of Geometric Mechanics, 2011, 3 (1) : 1-22. doi: 10.3934/jgm.2011.3.1

[8]

Eugenii Shustin, Emilia Fridman, Leonid Fridman. Oscillations in a second-order discontinuous system with delay. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 339-358. doi: 10.3934/dcds.2003.9.339

[9]

Marc Henrard. Homoclinic and multibump solutions for perturbed second order systems using topological degree. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 765-782. doi: 10.3934/dcds.1999.5.765

[10]

Anna Capietto, Walter Dambrosio. A topological degree approach to sublinear systems of second order differential equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 861-874. doi: 10.3934/dcds.2000.6.861

[11]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[12]

Qiong Meng, X. H. Tang. Solutions of a second-order Hamiltonian system with periodic boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1053-1067. doi: 10.3934/cpaa.2010.9.1053

[13]

Qilin Wang, Xiao-Bing Li, Guolin Yu. Second-order weak composed epiderivatives and applications to optimality conditions. Journal of Industrial & Management Optimization, 2013, 9 (2) : 455-470. doi: 10.3934/jimo.2013.9.455

[14]

W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209

[15]

Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581

[16]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213

[17]

Raegan Higgins. Asymptotic behavior of second-order nonlinear dynamic equations on time scales. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 609-622. doi: 10.3934/dcdsb.2010.13.609

[18]

Jaume Llibre, Amar Makhlouf. Periodic solutions of some classes of continuous second-order differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 477-482. doi: 10.3934/dcdsb.2017022

[19]

Jae-Hong Pyo, Jie Shen. Normal mode analysis of second-order projection methods for incompressible flows. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 817-840. doi: 10.3934/dcdsb.2005.5.817

[20]

Xiaoping Wang. Ground state homoclinic solutions for a second-order Hamiltonian system. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2163-2175. doi: 10.3934/dcdss.2019139

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (2)

[Back to Top]