• Previous Article
    Cellular instabilities analyzed by multi-scale Fourier series: A review
  • DCDS-S Home
  • This Issue
  • Next Article
    Analysis of an iterative scheme of fractional steps type associated to the nonlinear phase-field equation with non-homogeneous dynamic boundary conditions
April  2016, 9(2): 557-584. doi: 10.3934/dcdss.2016012

Stress gradient effects on the nucleation and propagation of cohesive cracks

1. 

CNRS, Ecole Polytechnique, Laboratoire de Mécanique des Solides, (UMR 7649), F-91128 Palaiseau Cedex, France, France

2. 

Institute of Mechanical Sciences and Industrial Applications, (UMR EDF-CNRS-CEA-ENSTA Paristech 9219), 92141 Clamart, France

Received  May 2015 Revised  November 2015 Published  March 2016

The aim of the present work is to study the nucleation and propagation of cohesive cracks in two-dimensional elastic structures. The crack evolution is governed by Dugdale's cohesive force model. Specifically, we investigate the stabilizing effect of the stress field non-uniformity by introducing a length $l$ which characterizes the stress gradient in a neighborhood of the point where the crack nucleates. We distinguish two stages in the crack evolution: the first one where the entire crack is submitted to cohesive forces, followed by a second one where a non-cohesive part appears. Assuming that the material characteristic length $d_c$ associated with Dugdale's model is small in comparison with the dimension $L$ of the body, we develop a two-scale approach and, using the methods of complex analysis, obtain the entire crack evolution with the loading in closed form. In particular, we show that the propagation is stable during the first stage, but becomes unstable with a brutal crack length jump as soon as the non-cohesive crack part appears. We also discuss the influence of the problem parameters and study the sensitivity to imperfections.
Citation: Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012
References:
[1]

R. Abdelmoula, J.-J. Marigo and T. Weller, Construction of fatigue laws from cohesive forces models: The mode I case, Comptes Rendus Mécanique, 337 (2009), 166-172. doi: 10.1016/j.crme.2009.04.002.

[2]

R. Abdelmoula, J.-J. Marigo and T. Weller, Construction of fatigue distribution in a model of cohesive forces: The case of mode III fractures, Comptes Rendus Mécanique, 337 (2009), 53-59. doi: 10.1016/j.crme.2008.12.001.

[3]

R. Abdelmoula, J.-J. Marigo and T. Weller, Construction and justification of Paris-like fatigue laws from Dugdale-type cohesive models, Annals of Solid and Structural Mechanics, 1 (2010), 139-158. doi: 10.1007/s12356-010-0011-3.

[4]

G. I. Barenblatt, The methematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech., 7 (1962), 55-129.

[5]

B. Bourdin, G. A. Francfort and J.-J. Marigo, The variational approach to fracture, J. Elasticity, 91 (2008), 5-148. doi: 10.1007/s10659-007-9107-3.

[6]

H. D. Bui, Mécanique de la Rupture Fragile, Masson, 1978.

[7]

M. Charlotte, P.-E. Dumouchel and J.-J. Marigo, Dynamic fracture: An example of convergence towards a discontinuous quasi-static solution, cmt, 20 (2008), 1-19. doi: 10.1007/s00161-008-0071-3.

[8]

M. Charlotte, G. A. Francfort, J.-J. Marigo and L. Truskinovsky, Revisiting brittle fracture as an energy minimization problem: Comparison of Griffith and Barenblatt surface energy models, Symposium on Continuous Damage and Fracture, (2000).

[9]

M. Charlotte, J. Laverne and J.-J. Marigo, Initiation of cracks with cohesive force models: A variational approach, Eur. J. Mech. A/Solids, 25 (2006), 649-669. doi: 10.1016/j.euromechsol.2006.05.002.

[10]

T. B. T. Dang, J.-J. Marigo and L. Halpern, Matching asymptotic method in propagation of cracks with Dugdale model, Key Engineering Materials, 525-526 (2013), 489-492. doi: 10.4028/www.scientific.net/KEM.525-526.489.

[11]

T. B. T. Dang, L. Halpern and J.-J. Marigo, Asymptotic analysis of small defects near a singular point in anti-plane elasticity. Application to the nucleation of a crack at a notch, Mathematics and Mechanics of Complex Systems, 2 (2014), 141-179. doi: 10.2140/memocs.2014.2.141.

[12]

G. Del Piero, One-Dimensional ductile-brittle transition, yielding and structured deformations, P. Argoul, M. Frémond (Eds.), Proceedings of IUTAM Symposium Variations de domaines et frontières libres en mécanique, Paris, 1997, Kluwer Academic, 6 (1999), 203-210. doi: 10.1007/978-94-011-4738-5_24.

[13]

G. Del Piero and M. Raous, A unified model for adhesive interfaces with damage, viscosity, and friction, Eur. J. Mech. A/Solids, 29 (2010), 496-507. doi: 10.1016/j.euromechsol.2010.02.004.

[14]

D. S. Dugdale, Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8 (1960), 100-104. doi: 10.1016/0022-5096(60)90013-2.

[15]

P.-E. Dumouchel, J.-J. Marigo and M. Charlotte, Rupture dynamique et fissuration quasi-statique instable, Comptes Rendus Mècanique, 335 (2007), 708-713. doi: 10.1016/j.crme.2007.07.003.

[16]

H. Ferdjani, R. Abdelmoula and J.-J. Marigo, Insensitivity to small defects of the rupture of materials governed by the Dugdale model, Continuum Mech. Thermodyn, 19 (2007), 191-210. doi: 10.1007/s00161-007-0051-z.

[17]

H. Ferdjani, R. Abdelmoula, J.-J. Marigo and S. El Borgi, Study of size effects in the Dugdale model through the case of a crack in a semi-infinite plane under anti-plane shear loading, Continuum Mech. Thermodyn, 21 (2009), 41-55. doi: 10.1007/s00161-009-0098-0.

[18]

A. Giacomini, Size effects on quasi-static growth of cracks, SIAM J. Math. Anal., 36 (2005), 1887-1928. doi: 10.1137/S0036141004439362.

[19]

A. Griffith, The phenomena of rupture and flow in solids, Philos. Trans. Roy. Soc. London, 221 (1921), 582-593. doi: 10.1098/rsta.1921.0006.

[20]

P. Grisvard, Elliptic Problems in Non Smooth Domains, Pitman - Monographs and Studies in Mathematics, 1985.

[21]

A. Jaubert and J.-J. Marigo, Justification of Paris-type fatigue laws from cohesive forces model via a variational approach, Continuum Mech. Thermodyn., 18 (2006), 23-45. doi: 10.1007/s00161-006-0023-8.

[22]

K. Keller, S. Weihe, T. Siegmund and B. Kroplin, Generalized cohesive zone model: Incorporating triaxiality dependent failure mechanisms, Computational Materials Science, 16 (1999), 267-274. doi: 10.1016/S0927-0256(99)00069-5.

[23]

J. Laverne and J.-J. Marigo, Approche globale, minima relatifs et Critère d'Amorçage en Mécanique de la Rupture, Comptes Rendus Mecanique, 332 (2004), 313-318.

[24]

G. Lazzaroni, R. Bargellini, P.-E. Dumouchel and J.-J. Marigo, On the role of kinetic energy during unstable propagation in a heterogeneous peeling test, International Journal of Fracture, 175 (2012), 127-150. doi: 10.1007/s10704-012-9708-0.

[25]

E. Lorentz, A mixed interface finite element for cohesive models, Comput. Methods Appl. Mech. Engrg., 198 (2008), 302-317. doi: 10.1016/j.cma.2008.08.006.

[26]

J.-J. Marigo and L. Truskinovsky, Initiation and propagation of fracture in the models of Griffith and Barenblatt, Continuum Mech. Thermodyn, 16 (2004), 391-409. doi: 10.1007/s00161-003-0164-y.

[27]

N. I. Muskhelishvili, Some Basic Problems of Mathematical Theory of Elasticity, P. Noordhoff Ltd, Groningen, 1963.

[28]

A. Needleman, Micromechanical modelling of interface decohesion, Ultramicroscopy, 40 (1992).

[29]

O. Nguyen, E. A. Repetto, M. Ortiz and R. A. Radovitzki, A cohesive model of fatigue crack growth, Int. J. Fract., 110 (2001), 351-369.

[30]

P. C. Paris, M. P. Gomez and W. E. Anderson, A rational analytic theory of fatigue, The Trend in Engineering, 13 (1961), 9-14.

[31]

K. L. Roe and T. Siegmund, An irreversible cohesive zone model for interface fatigue crack growth simulation, Eng. Fract. Mech., 70 (2003), 209-232. doi: 10.1016/S0013-7944(02)00034-6.

[32]

C. Talon and A. Curnier, A model of adhesion coupled to contact and friction, Eur. J. Mech. A/Solids, 22 (2003), 545-565. doi: 10.1016/S0997-7538(03)00046-9.

[33]

V. Tvergaard, Effect of fiber debonding in a whisker-reinforced metal, Mat. Sci. Eng. A, 125 (1990), 203-213.

[34]

J. R. Willis, A comparison of the fracture criteria of Griffith and Barenblatt, J. Mech. Phys. Solids, 15 (1967), 151-162. doi: 10.1016/0022-5096(67)90029-4.

show all references

References:
[1]

R. Abdelmoula, J.-J. Marigo and T. Weller, Construction of fatigue laws from cohesive forces models: The mode I case, Comptes Rendus Mécanique, 337 (2009), 166-172. doi: 10.1016/j.crme.2009.04.002.

[2]

R. Abdelmoula, J.-J. Marigo and T. Weller, Construction of fatigue distribution in a model of cohesive forces: The case of mode III fractures, Comptes Rendus Mécanique, 337 (2009), 53-59. doi: 10.1016/j.crme.2008.12.001.

[3]

R. Abdelmoula, J.-J. Marigo and T. Weller, Construction and justification of Paris-like fatigue laws from Dugdale-type cohesive models, Annals of Solid and Structural Mechanics, 1 (2010), 139-158. doi: 10.1007/s12356-010-0011-3.

[4]

G. I. Barenblatt, The methematical theory of equilibrium cracks in brittle fracture, Adv. Appl. Mech., 7 (1962), 55-129.

[5]

B. Bourdin, G. A. Francfort and J.-J. Marigo, The variational approach to fracture, J. Elasticity, 91 (2008), 5-148. doi: 10.1007/s10659-007-9107-3.

[6]

H. D. Bui, Mécanique de la Rupture Fragile, Masson, 1978.

[7]

M. Charlotte, P.-E. Dumouchel and J.-J. Marigo, Dynamic fracture: An example of convergence towards a discontinuous quasi-static solution, cmt, 20 (2008), 1-19. doi: 10.1007/s00161-008-0071-3.

[8]

M. Charlotte, G. A. Francfort, J.-J. Marigo and L. Truskinovsky, Revisiting brittle fracture as an energy minimization problem: Comparison of Griffith and Barenblatt surface energy models, Symposium on Continuous Damage and Fracture, (2000).

[9]

M. Charlotte, J. Laverne and J.-J. Marigo, Initiation of cracks with cohesive force models: A variational approach, Eur. J. Mech. A/Solids, 25 (2006), 649-669. doi: 10.1016/j.euromechsol.2006.05.002.

[10]

T. B. T. Dang, J.-J. Marigo and L. Halpern, Matching asymptotic method in propagation of cracks with Dugdale model, Key Engineering Materials, 525-526 (2013), 489-492. doi: 10.4028/www.scientific.net/KEM.525-526.489.

[11]

T. B. T. Dang, L. Halpern and J.-J. Marigo, Asymptotic analysis of small defects near a singular point in anti-plane elasticity. Application to the nucleation of a crack at a notch, Mathematics and Mechanics of Complex Systems, 2 (2014), 141-179. doi: 10.2140/memocs.2014.2.141.

[12]

G. Del Piero, One-Dimensional ductile-brittle transition, yielding and structured deformations, P. Argoul, M. Frémond (Eds.), Proceedings of IUTAM Symposium Variations de domaines et frontières libres en mécanique, Paris, 1997, Kluwer Academic, 6 (1999), 203-210. doi: 10.1007/978-94-011-4738-5_24.

[13]

G. Del Piero and M. Raous, A unified model for adhesive interfaces with damage, viscosity, and friction, Eur. J. Mech. A/Solids, 29 (2010), 496-507. doi: 10.1016/j.euromechsol.2010.02.004.

[14]

D. S. Dugdale, Yielding of steel sheets containing slits, J. Mech. Phys. Solids, 8 (1960), 100-104. doi: 10.1016/0022-5096(60)90013-2.

[15]

P.-E. Dumouchel, J.-J. Marigo and M. Charlotte, Rupture dynamique et fissuration quasi-statique instable, Comptes Rendus Mècanique, 335 (2007), 708-713. doi: 10.1016/j.crme.2007.07.003.

[16]

H. Ferdjani, R. Abdelmoula and J.-J. Marigo, Insensitivity to small defects of the rupture of materials governed by the Dugdale model, Continuum Mech. Thermodyn, 19 (2007), 191-210. doi: 10.1007/s00161-007-0051-z.

[17]

H. Ferdjani, R. Abdelmoula, J.-J. Marigo and S. El Borgi, Study of size effects in the Dugdale model through the case of a crack in a semi-infinite plane under anti-plane shear loading, Continuum Mech. Thermodyn, 21 (2009), 41-55. doi: 10.1007/s00161-009-0098-0.

[18]

A. Giacomini, Size effects on quasi-static growth of cracks, SIAM J. Math. Anal., 36 (2005), 1887-1928. doi: 10.1137/S0036141004439362.

[19]

A. Griffith, The phenomena of rupture and flow in solids, Philos. Trans. Roy. Soc. London, 221 (1921), 582-593. doi: 10.1098/rsta.1921.0006.

[20]

P. Grisvard, Elliptic Problems in Non Smooth Domains, Pitman - Monographs and Studies in Mathematics, 1985.

[21]

A. Jaubert and J.-J. Marigo, Justification of Paris-type fatigue laws from cohesive forces model via a variational approach, Continuum Mech. Thermodyn., 18 (2006), 23-45. doi: 10.1007/s00161-006-0023-8.

[22]

K. Keller, S. Weihe, T. Siegmund and B. Kroplin, Generalized cohesive zone model: Incorporating triaxiality dependent failure mechanisms, Computational Materials Science, 16 (1999), 267-274. doi: 10.1016/S0927-0256(99)00069-5.

[23]

J. Laverne and J.-J. Marigo, Approche globale, minima relatifs et Critère d'Amorçage en Mécanique de la Rupture, Comptes Rendus Mecanique, 332 (2004), 313-318.

[24]

G. Lazzaroni, R. Bargellini, P.-E. Dumouchel and J.-J. Marigo, On the role of kinetic energy during unstable propagation in a heterogeneous peeling test, International Journal of Fracture, 175 (2012), 127-150. doi: 10.1007/s10704-012-9708-0.

[25]

E. Lorentz, A mixed interface finite element for cohesive models, Comput. Methods Appl. Mech. Engrg., 198 (2008), 302-317. doi: 10.1016/j.cma.2008.08.006.

[26]

J.-J. Marigo and L. Truskinovsky, Initiation and propagation of fracture in the models of Griffith and Barenblatt, Continuum Mech. Thermodyn, 16 (2004), 391-409. doi: 10.1007/s00161-003-0164-y.

[27]

N. I. Muskhelishvili, Some Basic Problems of Mathematical Theory of Elasticity, P. Noordhoff Ltd, Groningen, 1963.

[28]

A. Needleman, Micromechanical modelling of interface decohesion, Ultramicroscopy, 40 (1992).

[29]

O. Nguyen, E. A. Repetto, M. Ortiz and R. A. Radovitzki, A cohesive model of fatigue crack growth, Int. J. Fract., 110 (2001), 351-369.

[30]

P. C. Paris, M. P. Gomez and W. E. Anderson, A rational analytic theory of fatigue, The Trend in Engineering, 13 (1961), 9-14.

[31]

K. L. Roe and T. Siegmund, An irreversible cohesive zone model for interface fatigue crack growth simulation, Eng. Fract. Mech., 70 (2003), 209-232. doi: 10.1016/S0013-7944(02)00034-6.

[32]

C. Talon and A. Curnier, A model of adhesion coupled to contact and friction, Eur. J. Mech. A/Solids, 22 (2003), 545-565. doi: 10.1016/S0997-7538(03)00046-9.

[33]

V. Tvergaard, Effect of fiber debonding in a whisker-reinforced metal, Mat. Sci. Eng. A, 125 (1990), 203-213.

[34]

J. R. Willis, A comparison of the fracture criteria of Griffith and Barenblatt, J. Mech. Phys. Solids, 15 (1967), 151-162. doi: 10.1016/0022-5096(67)90029-4.

[1]

Zhuoqin Yang, Tingting Guan. Bifurcation analysis of complex bursting induced by two different time-scale slow variables. Conference Publications, 2011, 2011 (Special) : 1440-1447. doi: 10.3934/proc.2011.2011.1440

[2]

G. Leugering, Marina Prechtel, Paul Steinmann, Michael Stingl. A cohesive crack propagation model: Mathematical theory and numerical solution. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1705-1729. doi: 10.3934/cpaa.2013.12.1705

[3]

Junyuan Yang, Yuming Chen, Jiming Liu. Stability analysis of a two-strain epidemic model on complex networks with latency. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2851-2866. doi: 10.3934/dcdsb.2016076

[4]

Zhenquan Zhang, Meiling Chen, Jiajun Zhang, Tianshou Zhou. Analysis of non-Markovian effects in generalized birth-death models. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3717-3735. doi: 10.3934/dcdsb.2020254

[5]

Gianni Dal Maso, Giuliano Lazzaroni. Crack growth with non-interpenetration: A simplified proof for the pure Neumann problem. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1219-1231. doi: 10.3934/dcds.2011.31.1219

[6]

Roger E. Khayat, Martin Ostoja-Starzewski. On the objective rate of heat and stress fluxes. Connection with micro/nano-scale heat convection. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 991-998. doi: 10.3934/dcdsb.2011.15.991

[7]

Baskar Sundaravadivoo. Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2561-2573. doi: 10.3934/dcdss.2020138

[8]

V. Torri. Numerical and dynamical analysis of undulation instability under shear stress. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 423-460. doi: 10.3934/dcdsb.2005.5.423

[9]

Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153

[10]

Alexandre Caboussat, Roland Glowinski. Numerical solution of a variational problem arising in stress analysis: The vector case. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1447-1472. doi: 10.3934/dcds.2010.27.1447

[11]

Nurullah Yilmaz, Ahmet Sahiner. On a new smoothing technique for non-smooth, non-convex optimization. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 317-330. doi: 10.3934/naco.2020004

[12]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic two-scale convergence and Young measures. Networks and Heterogeneous Media, 2022, 17 (2) : 227-254. doi: 10.3934/nhm.2022004

[13]

Bilal Saad, Mazen Saad. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 317-346. doi: 10.3934/dcdss.2014.7.317

[14]

Joseph J Kohn. Nirenberg's contributions to complex analysis. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 537-545. doi: 10.3934/dcds.2011.30.537

[15]

Yong-Jung Kim. A generalization of the moment problem to a complex measure space and an approximation technique using backward moments. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 187-207. doi: 10.3934/dcds.2011.30.187

[16]

Yong Zhao, Shanshan Ren. Synchronization for a class of complex-valued memristor-based competitive neural networks(CMCNNs) with different time scales. Electronic Research Archive, 2021, 29 (5) : 3323-3340. doi: 10.3934/era.2021041

[17]

Bangxin Jiang, Bowen Li, Jianquan Lu. Complex systems with impulsive effects and logical dynamics: A brief overview. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1273-1299. doi: 10.3934/dcdss.2020369

[18]

Victor Isakov, Nanhee Kim. Weak Carleman estimates with two large parameters for second order operators and applications to elasticity with residual stress. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 799-825. doi: 10.3934/dcds.2010.27.799

[19]

Yunfeng Jia, Jianhua Wu, Hong-Kun Xu. On qualitative analysis for a two competing fish species model with a combined non-selective harvesting effort in the presence of toxicity. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1927-1941. doi: 10.3934/cpaa.2013.12.1927

[20]

Ali Hadi, Saeid Mehrabian. A two-stage data envelopment analysis approach to solve extended transportation problem with non-homogenous costs. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022006

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (134)
  • HTML views (0)
  • Cited by (0)

[Back to Top]