• Previous Article
    Cellular instabilities analyzed by multi-scale Fourier series: A review
  • DCDS-S Home
  • This Issue
  • Next Article
    Analysis of an iterative scheme of fractional steps type associated to the nonlinear phase-field equation with non-homogeneous dynamic boundary conditions
April  2016, 9(2): 557-584. doi: 10.3934/dcdss.2016012

Stress gradient effects on the nucleation and propagation of cohesive cracks

1. 

CNRS, Ecole Polytechnique, Laboratoire de Mécanique des Solides, (UMR 7649), F-91128 Palaiseau Cedex, France, France

2. 

Institute of Mechanical Sciences and Industrial Applications, (UMR EDF-CNRS-CEA-ENSTA Paristech 9219), 92141 Clamart, France

Received  May 2015 Revised  November 2015 Published  March 2016

The aim of the present work is to study the nucleation and propagation of cohesive cracks in two-dimensional elastic structures. The crack evolution is governed by Dugdale's cohesive force model. Specifically, we investigate the stabilizing effect of the stress field non-uniformity by introducing a length $l$ which characterizes the stress gradient in a neighborhood of the point where the crack nucleates. We distinguish two stages in the crack evolution: the first one where the entire crack is submitted to cohesive forces, followed by a second one where a non-cohesive part appears. Assuming that the material characteristic length $d_c$ associated with Dugdale's model is small in comparison with the dimension $L$ of the body, we develop a two-scale approach and, using the methods of complex analysis, obtain the entire crack evolution with the loading in closed form. In particular, we show that the propagation is stable during the first stage, but becomes unstable with a brutal crack length jump as soon as the non-cohesive crack part appears. We also discuss the influence of the problem parameters and study the sensitivity to imperfections.
Citation: Tuan Hiep Pham, Jérôme Laverne, Jean-Jacques Marigo. Stress gradient effects on the nucleation and propagation of cohesive cracks. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 557-584. doi: 10.3934/dcdss.2016012
References:
[1]

Comptes Rendus Mécanique, 337 (2009), 166-172. doi: 10.1016/j.crme.2009.04.002.  Google Scholar

[2]

Comptes Rendus Mécanique, 337 (2009), 53-59. doi: 10.1016/j.crme.2008.12.001.  Google Scholar

[3]

Annals of Solid and Structural Mechanics, 1 (2010), 139-158. doi: 10.1007/s12356-010-0011-3.  Google Scholar

[4]

Adv. Appl. Mech., 7 (1962), 55-129.  Google Scholar

[5]

J. Elasticity, 91 (2008), 5-148. doi: 10.1007/s10659-007-9107-3.  Google Scholar

[6]

Masson, 1978. Google Scholar

[7]

cmt, 20 (2008), 1-19. doi: 10.1007/s00161-008-0071-3.  Google Scholar

[8]

Symposium on Continuous Damage and Fracture, (2000). Google Scholar

[9]

Eur. J. Mech. A/Solids, 25 (2006), 649-669. doi: 10.1016/j.euromechsol.2006.05.002.  Google Scholar

[10]

Key Engineering Materials, 525-526 (2013), 489-492. doi: 10.4028/www.scientific.net/KEM.525-526.489.  Google Scholar

[11]

Mathematics and Mechanics of Complex Systems, 2 (2014), 141-179. doi: 10.2140/memocs.2014.2.141.  Google Scholar

[12]

P. Argoul, M. Frémond (Eds.), Proceedings of IUTAM Symposium Variations de domaines et frontières libres en mécanique, Paris, 1997, Kluwer Academic, 6 (1999), 203-210. doi: 10.1007/978-94-011-4738-5_24.  Google Scholar

[13]

Eur. J. Mech. A/Solids, 29 (2010), 496-507. doi: 10.1016/j.euromechsol.2010.02.004.  Google Scholar

[14]

J. Mech. Phys. Solids, 8 (1960), 100-104. doi: 10.1016/0022-5096(60)90013-2.  Google Scholar

[15]

Comptes Rendus Mècanique, 335 (2007), 708-713. doi: 10.1016/j.crme.2007.07.003.  Google Scholar

[16]

Continuum Mech. Thermodyn, 19 (2007), 191-210. doi: 10.1007/s00161-007-0051-z.  Google Scholar

[17]

Continuum Mech. Thermodyn, 21 (2009), 41-55. doi: 10.1007/s00161-009-0098-0.  Google Scholar

[18]

SIAM J. Math. Anal., 36 (2005), 1887-1928. doi: 10.1137/S0036141004439362.  Google Scholar

[19]

Philos. Trans. Roy. Soc. London, 221 (1921), 582-593. doi: 10.1098/rsta.1921.0006.  Google Scholar

[20]

Pitman - Monographs and Studies in Mathematics, 1985. Google Scholar

[21]

Continuum Mech. Thermodyn., 18 (2006), 23-45. doi: 10.1007/s00161-006-0023-8.  Google Scholar

[22]

Computational Materials Science, 16 (1999), 267-274. doi: 10.1016/S0927-0256(99)00069-5.  Google Scholar

[23]

Comptes Rendus Mecanique, 332 (2004), 313-318. Google Scholar

[24]

International Journal of Fracture, 175 (2012), 127-150. doi: 10.1007/s10704-012-9708-0.  Google Scholar

[25]

Comput. Methods Appl. Mech. Engrg., 198 (2008), 302-317. doi: 10.1016/j.cma.2008.08.006.  Google Scholar

[26]

Continuum Mech. Thermodyn, 16 (2004), 391-409. doi: 10.1007/s00161-003-0164-y.  Google Scholar

[27]

P. Noordhoff Ltd, Groningen, 1963.  Google Scholar

[28]

Ultramicroscopy, 40 (1992). Google Scholar

[29]

Int. J. Fract., 110 (2001), 351-369. Google Scholar

[30]

The Trend in Engineering, 13 (1961), 9-14. Google Scholar

[31]

Eng. Fract. Mech., 70 (2003), 209-232. doi: 10.1016/S0013-7944(02)00034-6.  Google Scholar

[32]

Eur. J. Mech. A/Solids, 22 (2003), 545-565. doi: 10.1016/S0997-7538(03)00046-9.  Google Scholar

[33]

Mat. Sci. Eng. A, 125 (1990), 203-213. Google Scholar

[34]

J. Mech. Phys. Solids, 15 (1967), 151-162. doi: 10.1016/0022-5096(67)90029-4.  Google Scholar

show all references

References:
[1]

Comptes Rendus Mécanique, 337 (2009), 166-172. doi: 10.1016/j.crme.2009.04.002.  Google Scholar

[2]

Comptes Rendus Mécanique, 337 (2009), 53-59. doi: 10.1016/j.crme.2008.12.001.  Google Scholar

[3]

Annals of Solid and Structural Mechanics, 1 (2010), 139-158. doi: 10.1007/s12356-010-0011-3.  Google Scholar

[4]

Adv. Appl. Mech., 7 (1962), 55-129.  Google Scholar

[5]

J. Elasticity, 91 (2008), 5-148. doi: 10.1007/s10659-007-9107-3.  Google Scholar

[6]

Masson, 1978. Google Scholar

[7]

cmt, 20 (2008), 1-19. doi: 10.1007/s00161-008-0071-3.  Google Scholar

[8]

Symposium on Continuous Damage and Fracture, (2000). Google Scholar

[9]

Eur. J. Mech. A/Solids, 25 (2006), 649-669. doi: 10.1016/j.euromechsol.2006.05.002.  Google Scholar

[10]

Key Engineering Materials, 525-526 (2013), 489-492. doi: 10.4028/www.scientific.net/KEM.525-526.489.  Google Scholar

[11]

Mathematics and Mechanics of Complex Systems, 2 (2014), 141-179. doi: 10.2140/memocs.2014.2.141.  Google Scholar

[12]

P. Argoul, M. Frémond (Eds.), Proceedings of IUTAM Symposium Variations de domaines et frontières libres en mécanique, Paris, 1997, Kluwer Academic, 6 (1999), 203-210. doi: 10.1007/978-94-011-4738-5_24.  Google Scholar

[13]

Eur. J. Mech. A/Solids, 29 (2010), 496-507. doi: 10.1016/j.euromechsol.2010.02.004.  Google Scholar

[14]

J. Mech. Phys. Solids, 8 (1960), 100-104. doi: 10.1016/0022-5096(60)90013-2.  Google Scholar

[15]

Comptes Rendus Mècanique, 335 (2007), 708-713. doi: 10.1016/j.crme.2007.07.003.  Google Scholar

[16]

Continuum Mech. Thermodyn, 19 (2007), 191-210. doi: 10.1007/s00161-007-0051-z.  Google Scholar

[17]

Continuum Mech. Thermodyn, 21 (2009), 41-55. doi: 10.1007/s00161-009-0098-0.  Google Scholar

[18]

SIAM J. Math. Anal., 36 (2005), 1887-1928. doi: 10.1137/S0036141004439362.  Google Scholar

[19]

Philos. Trans. Roy. Soc. London, 221 (1921), 582-593. doi: 10.1098/rsta.1921.0006.  Google Scholar

[20]

Pitman - Monographs and Studies in Mathematics, 1985. Google Scholar

[21]

Continuum Mech. Thermodyn., 18 (2006), 23-45. doi: 10.1007/s00161-006-0023-8.  Google Scholar

[22]

Computational Materials Science, 16 (1999), 267-274. doi: 10.1016/S0927-0256(99)00069-5.  Google Scholar

[23]

Comptes Rendus Mecanique, 332 (2004), 313-318. Google Scholar

[24]

International Journal of Fracture, 175 (2012), 127-150. doi: 10.1007/s10704-012-9708-0.  Google Scholar

[25]

Comput. Methods Appl. Mech. Engrg., 198 (2008), 302-317. doi: 10.1016/j.cma.2008.08.006.  Google Scholar

[26]

Continuum Mech. Thermodyn, 16 (2004), 391-409. doi: 10.1007/s00161-003-0164-y.  Google Scholar

[27]

P. Noordhoff Ltd, Groningen, 1963.  Google Scholar

[28]

Ultramicroscopy, 40 (1992). Google Scholar

[29]

Int. J. Fract., 110 (2001), 351-369. Google Scholar

[30]

The Trend in Engineering, 13 (1961), 9-14. Google Scholar

[31]

Eng. Fract. Mech., 70 (2003), 209-232. doi: 10.1016/S0013-7944(02)00034-6.  Google Scholar

[32]

Eur. J. Mech. A/Solids, 22 (2003), 545-565. doi: 10.1016/S0997-7538(03)00046-9.  Google Scholar

[33]

Mat. Sci. Eng. A, 125 (1990), 203-213. Google Scholar

[34]

J. Mech. Phys. Solids, 15 (1967), 151-162. doi: 10.1016/0022-5096(67)90029-4.  Google Scholar

[1]

Zhenquan Zhang, Meiling Chen, Jiajun Zhang, Tianshou Zhou. Analysis of non-Markovian effects in generalized birth-death models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3717-3735. doi: 10.3934/dcdsb.2020254

[2]

Joel Coacalle, Andrew Raich. Compactness of the complex Green operator on non-pseudoconvex CR manifolds. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021061

[3]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[4]

Demou Luo, Qiru Wang. Dynamic analysis on an almost periodic predator-prey system with impulsive effects and time delays. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3427-3453. doi: 10.3934/dcdsb.2020238

[5]

Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046

[6]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[7]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[8]

Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1091-1102. doi: 10.3934/cpaa.2021008

[9]

Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021022

[10]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3295-3317. doi: 10.3934/dcds.2020406

[11]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[12]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2619-2633. doi: 10.3934/dcds.2020377

[13]

Wei Xi Li, Chao Jiang Xu. Subellipticity of some complex vector fields related to the Witten Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021047

[14]

Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021056

[15]

Mirelson M. Freitas, Anderson J. A. Ramos, Manoel J. Dos Santos, Jamille L.L. Almeida. Dynamics of piezoelectric beams with magnetic effects and delay term. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021015

[16]

Min Li, Jiahua Zhang, Yifan Xu, Wei Wang. Effects of disruption risk on a supply chain with a risk-averse retailer. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021024

[17]

Shan-Shan Lin. Due-window assignment scheduling with learning and deterioration effects. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021081

[18]

Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248

[19]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[20]

Longxiang Fang, Narayanaswamy Balakrishnan, Wenyu Huang. Stochastic comparisons of parallel systems with scale proportional hazards components equipped with starting devices. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021004

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (0)

[Back to Top]