April  2016, 9(2): 599-611. doi: 10.3934/dcdss.2016014

On estimation of internal state by an optimal control approach for elastoplastic material

1. 

GeM, UMR CNRS 6183,1 rue de la Noe, F-44321 Nantes, EdF-CEA-ENSTA UMR CNRS 8193, 1 avenue General Leclerc, F- 92141 Clamart, France

Received  October 2014 Revised  November 2015 Published  March 2016

After a general formulation of the evolution of an elastoplastic body using duality based on the constitutive behaviour, some classes of inverse problems (estimation of the internal state, determination of an unknown history, ...) for such materials are investigated. A general formulation based on optimal control is proposed, the control variables are related to the internal state. In each class of inverse problem, the solution is obtained by introducing a adjoin state and a suitable cost function.
Citation: Claude Stolz. On estimation of internal state by an optimal control approach for elastoplastic material. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 599-611. doi: 10.3934/dcdss.2016014
References:
[1]

P. Ballard and A. Constantinescu, On the inversion of subsurface residual stresses from surface stress measurements, J. Mech. Phys. Solids, 42 (1994), 1767-1787. doi: 10.1016/0022-5096(94)90071-X.

[2]

H. D. Bui, Introduction Aux Problèmes Inverses en Mécanique des Matériaux, Eyrolles, Paris, 1993.

[3]

B. Halphen, Stress accommodation in elastic perfectly plastic and viscoplastic structures, Mech. Res. Comm., 2 (1975), 273-278. doi: 10.1016/0093-6413(75)90057-9.

[4]

J. L. Lions, Contrôle Optimal de Systèmes Gouvernés par des Équations Aux Dérivées Partielles, Avant propos de P. Lelong Dunod, Paris; Gauthier-Villars, Paris, 1968.

[5]

Q. S. Nguyen, Bifurcation et stabilité des systèmes irréversibles obéissant au principe de dissipation maximale, J. Mécanique Théorique et appliquée, 3 (1984), 41-61.

[6]

M. Peigney and C. Stolz, An optimal control approach to the analysis of inelastic structures under cyclic loading, J. Mech. Phys. Solids, 51 (2003), 575-605. doi: 10.1016/S0022-5096(02)00104-7.

[7]

M. Peigney and C. Stolz, Approche par contrôle optimal des structures élastoviscoplastique sous chargement cyclique, C. R. Mécanique, 339 (2001), 643-648.

[8]

C. Stolz, Optimal control approach in non linear mechanics, C. R. Mécanique, 336 (2008), 238-244.

[9]

C. Stolz, Some applications of optimal control to inverse problems in elastoplasticity, J. of Mechanics of Materials and Structures, 20 (2015), 411-432. doi: 10.2140/jomms.2015.10.411.

show all references

References:
[1]

P. Ballard and A. Constantinescu, On the inversion of subsurface residual stresses from surface stress measurements, J. Mech. Phys. Solids, 42 (1994), 1767-1787. doi: 10.1016/0022-5096(94)90071-X.

[2]

H. D. Bui, Introduction Aux Problèmes Inverses en Mécanique des Matériaux, Eyrolles, Paris, 1993.

[3]

B. Halphen, Stress accommodation in elastic perfectly plastic and viscoplastic structures, Mech. Res. Comm., 2 (1975), 273-278. doi: 10.1016/0093-6413(75)90057-9.

[4]

J. L. Lions, Contrôle Optimal de Systèmes Gouvernés par des Équations Aux Dérivées Partielles, Avant propos de P. Lelong Dunod, Paris; Gauthier-Villars, Paris, 1968.

[5]

Q. S. Nguyen, Bifurcation et stabilité des systèmes irréversibles obéissant au principe de dissipation maximale, J. Mécanique Théorique et appliquée, 3 (1984), 41-61.

[6]

M. Peigney and C. Stolz, An optimal control approach to the analysis of inelastic structures under cyclic loading, J. Mech. Phys. Solids, 51 (2003), 575-605. doi: 10.1016/S0022-5096(02)00104-7.

[7]

M. Peigney and C. Stolz, Approche par contrôle optimal des structures élastoviscoplastique sous chargement cyclique, C. R. Mécanique, 339 (2001), 643-648.

[8]

C. Stolz, Optimal control approach in non linear mechanics, C. R. Mécanique, 336 (2008), 238-244.

[9]

C. Stolz, Some applications of optimal control to inverse problems in elastoplasticity, J. of Mechanics of Materials and Structures, 20 (2015), 411-432. doi: 10.2140/jomms.2015.10.411.

[1]

Lili Chang, Wei Gong, Guiquan Sun, Ningning Yan. PDE-constrained optimal control approach for the approximation of an inverse Cauchy problem. Inverse Problems and Imaging, 2015, 9 (3) : 791-814. doi: 10.3934/ipi.2015.9.791

[2]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[3]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control and Related Fields, 2021, 11 (3) : 555-578. doi: 10.3934/mcrf.2021012

[4]

Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021

[5]

Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505

[6]

Ciro D'Apice, Peter I. Kogut, Rosanna Manzo. On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks and Heterogeneous Media, 2014, 9 (3) : 501-518. doi: 10.3934/nhm.2014.9.501

[7]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial and Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[8]

Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control and Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185

[9]

Kazimierz Malanowski, Helmut Maurer. Sensitivity analysis for state constrained optimal control problems. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 241-272. doi: 10.3934/dcds.1998.4.241

[10]

Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 495-512. doi: 10.3934/naco.2020040

[11]

Nidhal Gammoudi, Hasnaa Zidani. A differential game control problem with state constraints. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022008

[12]

Eduardo Casas, Fredi Tröltzsch. Sparse optimal control for the heat equation with mixed control-state constraints. Mathematical Control and Related Fields, 2020, 10 (3) : 471-491. doi: 10.3934/mcrf.2020007

[13]

Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. An optimal control problem in HIV treatment. Conference Publications, 2013, 2013 (special) : 311-322. doi: 10.3934/proc.2013.2013.311

[14]

Andrea Bacchiocchi, Germana Giombini. An optimal control problem of monetary policy. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5769-5786. doi: 10.3934/dcdsb.2021224

[15]

Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial and Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737

[16]

Ana P. Lemos-Paião, Cristiana J. Silva, Delfim F. M. Torres. A sufficient optimality condition for delayed state-linear optimal control problems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2293-2313. doi: 10.3934/dcdsb.2019096

[17]

Piernicola Bettiol. State constrained $L^\infty$ optimal control problems interpreted as differential games. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3989-4017. doi: 10.3934/dcds.2015.35.3989

[18]

Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022

[19]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553

[20]

Christian Clason, Barbara Kaltenbacher. Avoiding degeneracy in the Westervelt equation by state constrained optimal control. Evolution Equations and Control Theory, 2013, 2 (2) : 281-300. doi: 10.3934/eect.2013.2.281

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (154)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]