- Previous Article
- DCDS-S Home
- This Issue
-
Next Article
Cellular instabilities analyzed by multi-scale Fourier series: A review
On estimation of internal state by an optimal control approach for elastoplastic material
1. | GeM, UMR CNRS 6183,1 rue de la Noe, F-44321 Nantes, EdF-CEA-ENSTA UMR CNRS 8193, 1 avenue General Leclerc, F- 92141 Clamart, France |
References:
[1] |
P. Ballard and A. Constantinescu, On the inversion of subsurface residual stresses from surface stress measurements,, J. Mech. Phys. Solids, 42 (1994), 1767.
doi: 10.1016/0022-5096(94)90071-X. |
[2] |
H. D. Bui, Introduction Aux Problèmes Inverses en Mécanique des Matériaux,, Eyrolles, (1993). Google Scholar |
[3] |
B. Halphen, Stress accommodation in elastic perfectly plastic and viscoplastic structures,, Mech. Res. Comm., 2 (1975), 273.
doi: 10.1016/0093-6413(75)90057-9. |
[4] |
J. L. Lions, Contrôle Optimal de Systèmes Gouvernés par des Équations Aux Dérivées Partielles,, Avant propos de P. Lelong Dunod, (1968).
|
[5] |
Q. S. Nguyen, Bifurcation et stabilité des systèmes irréversibles obéissant au principe de dissipation maximale,, J. Mécanique Théorique et appliquée, 3 (1984), 41.
|
[6] |
M. Peigney and C. Stolz, An optimal control approach to the analysis of inelastic structures under cyclic loading,, J. Mech. Phys. Solids, 51 (2003), 575.
doi: 10.1016/S0022-5096(02)00104-7. |
[7] |
M. Peigney and C. Stolz, Approche par contrôle optimal des structures élastoviscoplastique sous chargement cyclique,, C. R. Mécanique, 339 (2001), 643. Google Scholar |
[8] |
C. Stolz, Optimal control approach in non linear mechanics,, C. R. Mécanique, 336 (2008), 238. Google Scholar |
[9] |
C. Stolz, Some applications of optimal control to inverse problems in elastoplasticity,, J. of Mechanics of Materials and Structures, 20 (2015), 411.
doi: 10.2140/jomms.2015.10.411. |
show all references
References:
[1] |
P. Ballard and A. Constantinescu, On the inversion of subsurface residual stresses from surface stress measurements,, J. Mech. Phys. Solids, 42 (1994), 1767.
doi: 10.1016/0022-5096(94)90071-X. |
[2] |
H. D. Bui, Introduction Aux Problèmes Inverses en Mécanique des Matériaux,, Eyrolles, (1993). Google Scholar |
[3] |
B. Halphen, Stress accommodation in elastic perfectly plastic and viscoplastic structures,, Mech. Res. Comm., 2 (1975), 273.
doi: 10.1016/0093-6413(75)90057-9. |
[4] |
J. L. Lions, Contrôle Optimal de Systèmes Gouvernés par des Équations Aux Dérivées Partielles,, Avant propos de P. Lelong Dunod, (1968).
|
[5] |
Q. S. Nguyen, Bifurcation et stabilité des systèmes irréversibles obéissant au principe de dissipation maximale,, J. Mécanique Théorique et appliquée, 3 (1984), 41.
|
[6] |
M. Peigney and C. Stolz, An optimal control approach to the analysis of inelastic structures under cyclic loading,, J. Mech. Phys. Solids, 51 (2003), 575.
doi: 10.1016/S0022-5096(02)00104-7. |
[7] |
M. Peigney and C. Stolz, Approche par contrôle optimal des structures élastoviscoplastique sous chargement cyclique,, C. R. Mécanique, 339 (2001), 643. Google Scholar |
[8] |
C. Stolz, Optimal control approach in non linear mechanics,, C. R. Mécanique, 336 (2008), 238. Google Scholar |
[9] |
C. Stolz, Some applications of optimal control to inverse problems in elastoplasticity,, J. of Mechanics of Materials and Structures, 20 (2015), 411.
doi: 10.2140/jomms.2015.10.411. |
[1] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[2] |
Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302 |
[3] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[4] |
Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108 |
[5] |
Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031 |
[6] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[7] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004 |
[8] |
Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021017 |
[9] |
Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021005 |
[10] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[11] |
Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323 |
[12] |
Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020046 |
[13] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[14] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033 |
[15] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020052 |
[16] |
Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179 |
[17] |
Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099 |
[18] |
Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007 |
[19] |
Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008 |
[20] |
Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020347 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]