April  2016, 9(2): 599-611. doi: 10.3934/dcdss.2016014

On estimation of internal state by an optimal control approach for elastoplastic material

1. 

GeM, UMR CNRS 6183,1 rue de la Noe, F-44321 Nantes, EdF-CEA-ENSTA UMR CNRS 8193, 1 avenue General Leclerc, F- 92141 Clamart, France

Received  October 2014 Revised  November 2015 Published  March 2016

After a general formulation of the evolution of an elastoplastic body using duality based on the constitutive behaviour, some classes of inverse problems (estimation of the internal state, determination of an unknown history, ...) for such materials are investigated. A general formulation based on optimal control is proposed, the control variables are related to the internal state. In each class of inverse problem, the solution is obtained by introducing a adjoin state and a suitable cost function.
Citation: Claude Stolz. On estimation of internal state by an optimal control approach for elastoplastic material. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 599-611. doi: 10.3934/dcdss.2016014
References:
[1]

P. Ballard and A. Constantinescu, On the inversion of subsurface residual stresses from surface stress measurements,, J. Mech. Phys. Solids, 42 (1994), 1767.  doi: 10.1016/0022-5096(94)90071-X.  Google Scholar

[2]

H. D. Bui, Introduction Aux Problèmes Inverses en Mécanique des Matériaux,, Eyrolles, (1993).   Google Scholar

[3]

B. Halphen, Stress accommodation in elastic perfectly plastic and viscoplastic structures,, Mech. Res. Comm., 2 (1975), 273.  doi: 10.1016/0093-6413(75)90057-9.  Google Scholar

[4]

J. L. Lions, Contrôle Optimal de Systèmes Gouvernés par des Équations Aux Dérivées Partielles,, Avant propos de P. Lelong Dunod, (1968).   Google Scholar

[5]

Q. S. Nguyen, Bifurcation et stabilité des systèmes irréversibles obéissant au principe de dissipation maximale,, J. Mécanique Théorique et appliquée, 3 (1984), 41.   Google Scholar

[6]

M. Peigney and C. Stolz, An optimal control approach to the analysis of inelastic structures under cyclic loading,, J. Mech. Phys. Solids, 51 (2003), 575.  doi: 10.1016/S0022-5096(02)00104-7.  Google Scholar

[7]

M. Peigney and C. Stolz, Approche par contrôle optimal des structures élastoviscoplastique sous chargement cyclique,, C. R. Mécanique, 339 (2001), 643.   Google Scholar

[8]

C. Stolz, Optimal control approach in non linear mechanics,, C. R. Mécanique, 336 (2008), 238.   Google Scholar

[9]

C. Stolz, Some applications of optimal control to inverse problems in elastoplasticity,, J. of Mechanics of Materials and Structures, 20 (2015), 411.  doi: 10.2140/jomms.2015.10.411.  Google Scholar

show all references

References:
[1]

P. Ballard and A. Constantinescu, On the inversion of subsurface residual stresses from surface stress measurements,, J. Mech. Phys. Solids, 42 (1994), 1767.  doi: 10.1016/0022-5096(94)90071-X.  Google Scholar

[2]

H. D. Bui, Introduction Aux Problèmes Inverses en Mécanique des Matériaux,, Eyrolles, (1993).   Google Scholar

[3]

B. Halphen, Stress accommodation in elastic perfectly plastic and viscoplastic structures,, Mech. Res. Comm., 2 (1975), 273.  doi: 10.1016/0093-6413(75)90057-9.  Google Scholar

[4]

J. L. Lions, Contrôle Optimal de Systèmes Gouvernés par des Équations Aux Dérivées Partielles,, Avant propos de P. Lelong Dunod, (1968).   Google Scholar

[5]

Q. S. Nguyen, Bifurcation et stabilité des systèmes irréversibles obéissant au principe de dissipation maximale,, J. Mécanique Théorique et appliquée, 3 (1984), 41.   Google Scholar

[6]

M. Peigney and C. Stolz, An optimal control approach to the analysis of inelastic structures under cyclic loading,, J. Mech. Phys. Solids, 51 (2003), 575.  doi: 10.1016/S0022-5096(02)00104-7.  Google Scholar

[7]

M. Peigney and C. Stolz, Approche par contrôle optimal des structures élastoviscoplastique sous chargement cyclique,, C. R. Mécanique, 339 (2001), 643.   Google Scholar

[8]

C. Stolz, Optimal control approach in non linear mechanics,, C. R. Mécanique, 336 (2008), 238.   Google Scholar

[9]

C. Stolz, Some applications of optimal control to inverse problems in elastoplasticity,, J. of Mechanics of Materials and Structures, 20 (2015), 411.  doi: 10.2140/jomms.2015.10.411.  Google Scholar

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[3]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[4]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[5]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[6]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[7]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[8]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[9]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[10]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[11]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[12]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[13]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[14]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[15]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[16]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[17]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[18]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[19]

Xin Zhang, Jie Xiong, Shuaiqi Zhang. Optimal reinsurance-investment and dividends problem with fixed transaction costs. Journal of Industrial & Management Optimization, 2021, 17 (2) : 981-999. doi: 10.3934/jimo.2020008

[20]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]