- Previous Article
- DCDS-S Home
- This Issue
-
Next Article
Cellular instabilities analyzed by multi-scale Fourier series: A review
On estimation of internal state by an optimal control approach for elastoplastic material
1. | GeM, UMR CNRS 6183,1 rue de la Noe, F-44321 Nantes, EdF-CEA-ENSTA UMR CNRS 8193, 1 avenue General Leclerc, F- 92141 Clamart, France |
References:
[1] |
P. Ballard and A. Constantinescu, On the inversion of subsurface residual stresses from surface stress measurements,, J. Mech. Phys. Solids, 42 (1994), 1767.
doi: 10.1016/0022-5096(94)90071-X. |
[2] |
H. D. Bui, Introduction Aux Problèmes Inverses en Mécanique des Matériaux,, Eyrolles, (1993). Google Scholar |
[3] |
B. Halphen, Stress accommodation in elastic perfectly plastic and viscoplastic structures,, Mech. Res. Comm., 2 (1975), 273.
doi: 10.1016/0093-6413(75)90057-9. |
[4] |
J. L. Lions, Contrôle Optimal de Systèmes Gouvernés par des Équations Aux Dérivées Partielles,, Avant propos de P. Lelong Dunod, (1968).
|
[5] |
Q. S. Nguyen, Bifurcation et stabilité des systèmes irréversibles obéissant au principe de dissipation maximale,, J. Mécanique Théorique et appliquée, 3 (1984), 41.
|
[6] |
M. Peigney and C. Stolz, An optimal control approach to the analysis of inelastic structures under cyclic loading,, J. Mech. Phys. Solids, 51 (2003), 575.
doi: 10.1016/S0022-5096(02)00104-7. |
[7] |
M. Peigney and C. Stolz, Approche par contrôle optimal des structures élastoviscoplastique sous chargement cyclique,, C. R. Mécanique, 339 (2001), 643. Google Scholar |
[8] |
C. Stolz, Optimal control approach in non linear mechanics,, C. R. Mécanique, 336 (2008), 238. Google Scholar |
[9] |
C. Stolz, Some applications of optimal control to inverse problems in elastoplasticity,, J. of Mechanics of Materials and Structures, 20 (2015), 411.
doi: 10.2140/jomms.2015.10.411. |
show all references
References:
[1] |
P. Ballard and A. Constantinescu, On the inversion of subsurface residual stresses from surface stress measurements,, J. Mech. Phys. Solids, 42 (1994), 1767.
doi: 10.1016/0022-5096(94)90071-X. |
[2] |
H. D. Bui, Introduction Aux Problèmes Inverses en Mécanique des Matériaux,, Eyrolles, (1993). Google Scholar |
[3] |
B. Halphen, Stress accommodation in elastic perfectly plastic and viscoplastic structures,, Mech. Res. Comm., 2 (1975), 273.
doi: 10.1016/0093-6413(75)90057-9. |
[4] |
J. L. Lions, Contrôle Optimal de Systèmes Gouvernés par des Équations Aux Dérivées Partielles,, Avant propos de P. Lelong Dunod, (1968).
|
[5] |
Q. S. Nguyen, Bifurcation et stabilité des systèmes irréversibles obéissant au principe de dissipation maximale,, J. Mécanique Théorique et appliquée, 3 (1984), 41.
|
[6] |
M. Peigney and C. Stolz, An optimal control approach to the analysis of inelastic structures under cyclic loading,, J. Mech. Phys. Solids, 51 (2003), 575.
doi: 10.1016/S0022-5096(02)00104-7. |
[7] |
M. Peigney and C. Stolz, Approche par contrôle optimal des structures élastoviscoplastique sous chargement cyclique,, C. R. Mécanique, 339 (2001), 643. Google Scholar |
[8] |
C. Stolz, Optimal control approach in non linear mechanics,, C. R. Mécanique, 336 (2008), 238. Google Scholar |
[9] |
C. Stolz, Some applications of optimal control to inverse problems in elastoplasticity,, J. of Mechanics of Materials and Structures, 20 (2015), 411.
doi: 10.2140/jomms.2015.10.411. |
[1] |
Lili Chang, Wei Gong, Guiquan Sun, Ningning Yan. PDE-constrained optimal control approach for the approximation of an inverse Cauchy problem. Inverse Problems & Imaging, 2015, 9 (3) : 791-814. doi: 10.3934/ipi.2015.9.791 |
[2] |
Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021 |
[3] |
Maria do Rosário de Pinho, Ilya Shvartsman. Lipschitz continuity of optimal control and Lagrange multipliers in a problem with mixed and pure state constraints. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 505-522. doi: 10.3934/dcds.2011.29.505 |
[4] |
Ciro D'Apice, Peter I. Kogut, Rosanna Manzo. On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks & Heterogeneous Media, 2014, 9 (3) : 501-518. doi: 10.3934/nhm.2014.9.501 |
[5] |
Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967 |
[6] |
Jérome Lohéac, Jean-François Scheid. Time optimal control for a nonholonomic system with state constraint. Mathematical Control & Related Fields, 2013, 3 (2) : 185-208. doi: 10.3934/mcrf.2013.3.185 |
[7] |
Kazimierz Malanowski, Helmut Maurer. Sensitivity analysis for state constrained optimal control problems. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 241-272. doi: 10.3934/dcds.1998.4.241 |
[8] |
Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. An optimal control problem in HIV treatment. Conference Publications, 2013, 2013 (special) : 311-322. doi: 10.3934/proc.2013.2013.311 |
[9] |
Changzhi Wu, Kok Lay Teo, Volker Rehbock. Optimal control of piecewise affine systems with piecewise affine state feedback. Journal of Industrial & Management Optimization, 2009, 5 (4) : 737-747. doi: 10.3934/jimo.2009.5.737 |
[10] |
Piernicola Bettiol. State constrained $L^\infty$ optimal control problems interpreted as differential games. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3989-4017. doi: 10.3934/dcds.2015.35.3989 |
[11] |
Luís Tiago Paiva, Fernando A. C. C. Fontes. Adaptive time--mesh refinement in optimal control problems with state constraints. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4553-4572. doi: 10.3934/dcds.2015.35.4553 |
[12] |
Christian Clason, Barbara Kaltenbacher. Avoiding degeneracy in the Westervelt equation by state constrained optimal control. Evolution Equations & Control Theory, 2013, 2 (2) : 281-300. doi: 10.3934/eect.2013.2.281 |
[13] |
Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control & Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006 |
[14] |
Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control & Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022 |
[15] |
Ana P. Lemos-Paião, Cristiana J. Silva, Delfim F. M. Torres. A sufficient optimality condition for delayed state-linear optimal control problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2293-2313. doi: 10.3934/dcdsb.2019096 |
[16] |
V.N. Malozemov, A.V. Omelchenko. On a discrete optimal control problem with an explicit solution. Journal of Industrial & Management Optimization, 2006, 2 (1) : 55-62. doi: 10.3934/jimo.2006.2.55 |
[17] |
Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129 |
[18] |
Akram Kheirabadi, Asadollah Mahmoudzadeh Vaziri, Sohrab Effati. Solving optimal control problem using Hermite wavelet. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 101-112. doi: 10.3934/naco.2019008 |
[19] |
Lijuan Wang, Qishu Yan. Optimal control problem for exact synchronization of parabolic system. Mathematical Control & Related Fields, 2019, 9 (3) : 411-424. doi: 10.3934/mcrf.2019019 |
[20] |
Yujing Wang, Changjun Yu, Kok Lay Teo. A new computational strategy for optimal control problem with a cost on changing control. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 339-364. doi: 10.3934/naco.2016016 |
2018 Impact Factor: 0.545
Tools
Metrics
Other articles
by authors
[Back to Top]