June  2016, 9(3): 619-629. doi: 10.3934/dcdss.2016016

A fractional eigenvalue problem in $\mathbb{R}^N$

1. 

Department of Mathematics and Computer Sciences, University of Perugia, Via Vanvitelli 1, 06123 Perugia, Italy, Italy

Received  April 2015 Revised  June 2015 Published  April 2016

We prove that a linear fractional operator with an asymptotically constant lower order term in the whole space admits eigenvalues.
Citation: Giacomo Bocerani, Dimitri Mugnai. A fractional eigenvalue problem in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 619-629. doi: 10.3934/dcdss.2016016
References:
[1]

W. Allegretto, Principal eigenvalues for indefinite-weight elliptic problems in $\mathbbR^n$,, Proc. Amer. Math. Soc., 116 (1992), 701. doi: 10.2307/2159436. Google Scholar

[2]

A. Ambrosetti and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems,, Cambridge, (2007). doi: 10.1017/CBO9780511618260. Google Scholar

[3]

G. Bocerani and D. Mugnai, An asymptotically linear fractional problem in $\mathbbR^N$,, submitted., (). Google Scholar

[4]

K. J. Brown, C. Cosner and J. Fleckinger, Principal eigenvalues for problems with indefinite weight function on $\mathbbR^N$,, Proc. Amer. Math. Soc., 109 (1990), 147. doi: 10.2307/2048374. Google Scholar

[5]

X. Chang and Z.-Q. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity,, Nonlinearity, 26 (2013), 479. doi: 10.1088/0951-7715/26/2/479. Google Scholar

[6]

P. Drábek and Y. X. Huang, Bifurcation problems for the $p-$Laplacian in $\mathbbR^n$,, Trans. Amer. Math. Soc., 349 (1997), 171. doi: 10.1090/S0002-9947-97-01788-1. Google Scholar

[7]

P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian,, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237. doi: 10.1017/S0308210511000746. Google Scholar

[8]

R. L. Frank, E. H. Lieb and R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators,, J. Amer. Math. Soc., 21 (2008), 925. doi: 10.1090/S0894-0347-07-00582-6. Google Scholar

[9]

L. Leadi and A. Yechoui, Principal eigenvalue in an unbounded domain with indefinite potential,, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 391. doi: 10.1007/s00030-010-0059-0. Google Scholar

[10]

J. Liu, X. Liu and Y. Guo, On an asymptotically $p$-linear $p$-Laplacian equation in $\mathbbR^N$,, Nonlinear Anal., 74 (2011), 676. doi: 10.1016/j.na.2010.09.024. Google Scholar

[11]

P. L. Lions, The concentration compactness principle in the calculus of variations, the locally compact case, II,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223. Google Scholar

[12]

D. Mugnai and N. S. Papageorgiou, Bifurcation for positive solutions of nonlinear diffusive logistic equations in $\mathbbR^N$ with Indefinite Weight,, Indiana Univ. Math. J., 63 (2014), 1397. doi: 10.1512/iumj.2014.63.5369. Google Scholar

[13]

D. Mugnai and N. S. Papageorgiou, Resonant nonlinear Neumann problems with indefinite weight,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 11 (2012), 729. Google Scholar

[14]

S. Secchi, On fractional Schrödinger equations in $\mathbbR^N$ without the Ambrosetti-Rabinowitz Condition,, Topol. Methods. Nonlinear Anal., (). Google Scholar

[15]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton University Press, (1970). Google Scholar

[16]

M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,, Springer-Verlag, (2008). Google Scholar

[17]

A. Szulkin and M. Willem, Eigenvalue problems with indefinite weight,, Studia Mathematica, 135 (1999), 191. Google Scholar

[18]

J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms,, Discrete Contin. Dyn. Syst., 31 (2011), 975. doi: 10.3934/dcds.2011.31.975. Google Scholar

[19]

E. Valdinoci, From the long jump random walk to the fractional Laplacian,, Bol. Soc. Esp. Mat. Apl., 49 (2009), 33. Google Scholar

[20]

M. Willem, Minimax Theorems,, Progr. Nonlinear Differential Equations Appl. 24, 24 (1996). doi: 10.1007/978-1-4612-4146-1. Google Scholar

show all references

References:
[1]

W. Allegretto, Principal eigenvalues for indefinite-weight elliptic problems in $\mathbbR^n$,, Proc. Amer. Math. Soc., 116 (1992), 701. doi: 10.2307/2159436. Google Scholar

[2]

A. Ambrosetti and A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems,, Cambridge, (2007). doi: 10.1017/CBO9780511618260. Google Scholar

[3]

G. Bocerani and D. Mugnai, An asymptotically linear fractional problem in $\mathbbR^N$,, submitted., (). Google Scholar

[4]

K. J. Brown, C. Cosner and J. Fleckinger, Principal eigenvalues for problems with indefinite weight function on $\mathbbR^N$,, Proc. Amer. Math. Soc., 109 (1990), 147. doi: 10.2307/2048374. Google Scholar

[5]

X. Chang and Z.-Q. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity,, Nonlinearity, 26 (2013), 479. doi: 10.1088/0951-7715/26/2/479. Google Scholar

[6]

P. Drábek and Y. X. Huang, Bifurcation problems for the $p-$Laplacian in $\mathbbR^n$,, Trans. Amer. Math. Soc., 349 (1997), 171. doi: 10.1090/S0002-9947-97-01788-1. Google Scholar

[7]

P. Felmer, A. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian,, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237. doi: 10.1017/S0308210511000746. Google Scholar

[8]

R. L. Frank, E. H. Lieb and R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators,, J. Amer. Math. Soc., 21 (2008), 925. doi: 10.1090/S0894-0347-07-00582-6. Google Scholar

[9]

L. Leadi and A. Yechoui, Principal eigenvalue in an unbounded domain with indefinite potential,, NoDEA Nonlinear Differential Equations Appl., 17 (2010), 391. doi: 10.1007/s00030-010-0059-0. Google Scholar

[10]

J. Liu, X. Liu and Y. Guo, On an asymptotically $p$-linear $p$-Laplacian equation in $\mathbbR^N$,, Nonlinear Anal., 74 (2011), 676. doi: 10.1016/j.na.2010.09.024. Google Scholar

[11]

P. L. Lions, The concentration compactness principle in the calculus of variations, the locally compact case, II,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 223. Google Scholar

[12]

D. Mugnai and N. S. Papageorgiou, Bifurcation for positive solutions of nonlinear diffusive logistic equations in $\mathbbR^N$ with Indefinite Weight,, Indiana Univ. Math. J., 63 (2014), 1397. doi: 10.1512/iumj.2014.63.5369. Google Scholar

[13]

D. Mugnai and N. S. Papageorgiou, Resonant nonlinear Neumann problems with indefinite weight,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 11 (2012), 729. Google Scholar

[14]

S. Secchi, On fractional Schrödinger equations in $\mathbbR^N$ without the Ambrosetti-Rabinowitz Condition,, Topol. Methods. Nonlinear Anal., (). Google Scholar

[15]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton University Press, (1970). Google Scholar

[16]

M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems,, Springer-Verlag, (2008). Google Scholar

[17]

A. Szulkin and M. Willem, Eigenvalue problems with indefinite weight,, Studia Mathematica, 135 (1999), 191. Google Scholar

[18]

J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms,, Discrete Contin. Dyn. Syst., 31 (2011), 975. doi: 10.3934/dcds.2011.31.975. Google Scholar

[19]

E. Valdinoci, From the long jump random walk to the fractional Laplacian,, Bol. Soc. Esp. Mat. Apl., 49 (2009), 33. Google Scholar

[20]

M. Willem, Minimax Theorems,, Progr. Nonlinear Differential Equations Appl. 24, 24 (1996). doi: 10.1007/978-1-4612-4146-1. Google Scholar

[1]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[2]

Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012

[3]

Giuseppina Barletta, Roberto Livrea, Nikolaos S. Papageorgiou. A nonlinear eigenvalue problem for the periodic scalar $p$-Laplacian. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1075-1086. doi: 10.3934/cpaa.2014.13.1075

[4]

Mikko Kemppainen, Peter Sjögren, José Luis Torrea. Wave extension problem for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4905-4929. doi: 10.3934/dcds.2015.35.4905

[5]

Julián Fernández Bonder, Leandro M. Del Pezzo. An optimization problem for the first eigenvalue of the $p-$Laplacian plus a potential. Communications on Pure & Applied Analysis, 2006, 5 (4) : 675-690. doi: 10.3934/cpaa.2006.5.675

[6]

Teodora-Liliana Dinu. Entire solutions of the nonlinear eigenvalue logistic problem with sign-changing potential and absorption. Communications on Pure & Applied Analysis, 2003, 2 (3) : 311-321. doi: 10.3934/cpaa.2003.2.311

[7]

Li-Fang Dai, Mao-Lin Liang, Wei-Yuan Ma. Optimization problems on the rank of the solution to left and right inverse eigenvalue problem. Journal of Industrial & Management Optimization, 2015, 11 (1) : 171-183. doi: 10.3934/jimo.2015.11.171

[8]

Xing Li, Chungen Shen, Lei-Hong Zhang. A projected preconditioned conjugate gradient method for the linear response eigenvalue problem. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 389-412. doi: 10.3934/naco.2018025

[9]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[10]

Xudong Shang, Jihui Zhang, Yang Yang. Positive solutions of nonhomogeneous fractional Laplacian problem with critical exponent. Communications on Pure & Applied Analysis, 2014, 13 (2) : 567-584. doi: 10.3934/cpaa.2014.13.567

[11]

Qilong Zhai, Ran Zhang. Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 403-413. doi: 10.3934/dcdsb.2018091

[12]

Liping Wang, Juncheng Wei. Infinite multiplicity for an inhomogeneous supercritical problem in entire space. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1243-1257. doi: 10.3934/cpaa.2013.12.1243

[13]

Gabriella Pinzari. Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result. Electronic Research Announcements, 2015, 22: 55-75. doi: 10.3934/era.2015.22.55

[14]

Mihai Mihăilescu. An eigenvalue problem possessing a continuous family of eigenvalues plus an isolated eigenvalue. Communications on Pure & Applied Analysis, 2011, 10 (2) : 701-708. doi: 10.3934/cpaa.2011.10.701

[15]

David Colton, Yuk-J. Leung. On a transmission eigenvalue problem for a spherically stratified coated dielectric. Inverse Problems & Imaging, 2016, 10 (2) : 369-378. doi: 10.3934/ipi.2016004

[16]

Huan Gao, Zhibao Li, Haibin Zhang. A fast continuous method for the extreme eigenvalue problem. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1587-1599. doi: 10.3934/jimo.2017008

[17]

Isabeau Birindelli, Stefania Patrizi. A Neumann eigenvalue problem for fully nonlinear operators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 845-863. doi: 10.3934/dcds.2010.28.845

[18]

Jean-Michel Rakotoson. Generalized eigenvalue problem for totally discontinuous operators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 343-373. doi: 10.3934/dcds.2010.28.343

[19]

Guozhen Lu and Juncheng Wei. On positive entire solutions to the Yamabe-type problem on the Heisenberg and stratified groups. Electronic Research Announcements, 1997, 3: 83-89.

[20]

Xi Wang, Zuhan Liu, Ling Zhou. Asymptotic decay for the classical solution of the chemotaxis system with fractional Laplacian in high dimensions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 4003-4020. doi: 10.3934/dcdsb.2018121

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]