June  2016, 9(3): 631-642. doi: 10.3934/dcdss.2016017

Periodic solutions to nonlocal MEMS equations

1. 

Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11, 22100 Como, Italy

2. 

Dipartimento di Matematica “L. Tonelli”, Università di Pisa, Largo B. Pontecorvo, 5. I-56127 Pisa

Received  March 2015 Revised  February 2016 Published  April 2016

Combining a priori estimates with penalization techniques and an implicit function argument based on Campanato's near operators theory, we obtain the existence of periodic solutions for a fourth order integro-differential equation modelling actuators in MEMS devices.
Citation: Daniele Cassani, Antonio Tarsia. Periodic solutions to nonlocal MEMS equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 631-642. doi: 10.3934/dcdss.2016017
References:
[1]

P. Acquistapace and A. Tarsia, On periodic solutions of non-autonomous second order differential equations in Hilbert spaces, preprint, 2015. Google Scholar

[2]

C. Baiocchi, Soluzioni ordinarie e generalizzate del problema di Cauchy per equazioni differenziali astratte lineari del secondo ordine in spazi di Hilbert, Ricerche Mat., 16 (1967), 27-95.  Google Scholar

[3]

E. Berchio, D. Cassani and F. Gazzola, Hardy-Rellich inequalities with boundary remainder terms and applications, Manuscripta Mathematica, 131 (2010), 427-458. doi: 10.1007/s00229-009-0328-6.  Google Scholar

[4]

S. Campanato, On the condition of nearness between operators, Ann. Mat. Pura Appl., 167 (1994), 243-256. doi: 10.1007/BF01760335.  Google Scholar

[5]

D. Cassani, J. M. do Ó and N. Ghoussoub, On a fourth order elliptic problem with a singular nonlinearity, Adv. Nonlinear Stud., 9 (2009), 177-197.  Google Scholar

[6]

D. Cassani, L. Fattorusso and A. Tarsia, Nonlocal dynamic problems with singular nonlinearities and applications to MEMS, in Analysis and Topology in Nonlinear Differential Equations, Progress in Nonlinear Differential Equations and their Applications, 85, Birkhäuser, (2014), 187-206.  Google Scholar

[7]

D. Cassani, L. Fattorusso and A. Tarsia, Global existence for nonlocal MEMS, Nonlinear Analysis, 74 (2011), 5722-5726. doi: 10.1016/j.na.2011.05.060.  Google Scholar

[8]

D. Cassani, B. Kaltenbacher and A. Lorenzi, Direct and inverse problems related to MEMS, Inverse Problems, 25 (2009), 105002 (22pp). doi: 10.1088/0266-5611/25/10/105002.  Google Scholar

[9]

D. Cassani and A. Tarsia, Maximum principle for higher order operators in general domains and applications, preprint, 2015. Google Scholar

[10]

F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems. Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains, Lecture Notes in Mathematics, 1991, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-12245-3.  Google Scholar

[11]

J.-S. Guo, B. Hu and C.-J. Wang, A nonlocal quenching problem arising in a micro-electro mechanical system, Quart. Appl. Math., 67 (2009), 725-734. doi: 10.1090/S0033-569X-09-01159-5.  Google Scholar

[12]

K. M. Hui, The existence and dynamic properties of a parabolic nonlocal MEMS equation, Nonlinear Anal., 74 (2011), 298-316. doi: 10.1016/j.na.2010.08.045.  Google Scholar

[13]

N. I. Kavallaris, A. A. Lacey, C. V. Nikolopoulos and D. E. Tzanetis, A hyperbolic non-local problem modelling MEMS technology, Rocky Mountain J. Math., 41 (2011), 505-534. doi: 10.1216/RMJ-2011-41-2-505.  Google Scholar

[14]

F. H. Lin and Y. S. Yang, Nonlinear non-local elliptic equation modelling electrostatic actuation, Proc. R. Soc. London, Ser. A, 463 (2007), 1323-1337. doi: 10.1098/rspa.2007.1816.  Google Scholar

[15]

J. A. Pelesko and A. A. Triolo, Nonlocal problems in MEMS device control, J. Engrg. Math., 41 (2001), 345-366. doi: 10.1023/A:1012292311304.  Google Scholar

[16]

A. Tarsia, Differential equations and implicit functions: A generalization of the near operator theorem, Topol. Methods Nonlinear Anal., 11 (1998), 115-133.  Google Scholar

show all references

References:
[1]

P. Acquistapace and A. Tarsia, On periodic solutions of non-autonomous second order differential equations in Hilbert spaces, preprint, 2015. Google Scholar

[2]

C. Baiocchi, Soluzioni ordinarie e generalizzate del problema di Cauchy per equazioni differenziali astratte lineari del secondo ordine in spazi di Hilbert, Ricerche Mat., 16 (1967), 27-95.  Google Scholar

[3]

E. Berchio, D. Cassani and F. Gazzola, Hardy-Rellich inequalities with boundary remainder terms and applications, Manuscripta Mathematica, 131 (2010), 427-458. doi: 10.1007/s00229-009-0328-6.  Google Scholar

[4]

S. Campanato, On the condition of nearness between operators, Ann. Mat. Pura Appl., 167 (1994), 243-256. doi: 10.1007/BF01760335.  Google Scholar

[5]

D. Cassani, J. M. do Ó and N. Ghoussoub, On a fourth order elliptic problem with a singular nonlinearity, Adv. Nonlinear Stud., 9 (2009), 177-197.  Google Scholar

[6]

D. Cassani, L. Fattorusso and A. Tarsia, Nonlocal dynamic problems with singular nonlinearities and applications to MEMS, in Analysis and Topology in Nonlinear Differential Equations, Progress in Nonlinear Differential Equations and their Applications, 85, Birkhäuser, (2014), 187-206.  Google Scholar

[7]

D. Cassani, L. Fattorusso and A. Tarsia, Global existence for nonlocal MEMS, Nonlinear Analysis, 74 (2011), 5722-5726. doi: 10.1016/j.na.2011.05.060.  Google Scholar

[8]

D. Cassani, B. Kaltenbacher and A. Lorenzi, Direct and inverse problems related to MEMS, Inverse Problems, 25 (2009), 105002 (22pp). doi: 10.1088/0266-5611/25/10/105002.  Google Scholar

[9]

D. Cassani and A. Tarsia, Maximum principle for higher order operators in general domains and applications, preprint, 2015. Google Scholar

[10]

F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems. Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains, Lecture Notes in Mathematics, 1991, Springer-Verlag, Berlin, 2010. doi: 10.1007/978-3-642-12245-3.  Google Scholar

[11]

J.-S. Guo, B. Hu and C.-J. Wang, A nonlocal quenching problem arising in a micro-electro mechanical system, Quart. Appl. Math., 67 (2009), 725-734. doi: 10.1090/S0033-569X-09-01159-5.  Google Scholar

[12]

K. M. Hui, The existence and dynamic properties of a parabolic nonlocal MEMS equation, Nonlinear Anal., 74 (2011), 298-316. doi: 10.1016/j.na.2010.08.045.  Google Scholar

[13]

N. I. Kavallaris, A. A. Lacey, C. V. Nikolopoulos and D. E. Tzanetis, A hyperbolic non-local problem modelling MEMS technology, Rocky Mountain J. Math., 41 (2011), 505-534. doi: 10.1216/RMJ-2011-41-2-505.  Google Scholar

[14]

F. H. Lin and Y. S. Yang, Nonlinear non-local elliptic equation modelling electrostatic actuation, Proc. R. Soc. London, Ser. A, 463 (2007), 1323-1337. doi: 10.1098/rspa.2007.1816.  Google Scholar

[15]

J. A. Pelesko and A. A. Triolo, Nonlocal problems in MEMS device control, J. Engrg. Math., 41 (2001), 345-366. doi: 10.1023/A:1012292311304.  Google Scholar

[16]

A. Tarsia, Differential equations and implicit functions: A generalization of the near operator theorem, Topol. Methods Nonlinear Anal., 11 (1998), 115-133.  Google Scholar

[1]

Nestor Guillen, Russell W. Schwab. Neumann homogenization via integro-differential operators. Discrete & Continuous Dynamical Systems, 2016, 36 (7) : 3677-3703. doi: 10.3934/dcds.2016.36.3677

[2]

Seda İğret Araz. New class of volterra integro-differential equations with fractal-fractional operators: Existence, uniqueness and numerical scheme. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2297-2309. doi: 10.3934/dcdss.2021053

[3]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[4]

Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Singular integro-differential equations with applications. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021051

[5]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[6]

Yi Cao, Jianhua Wu, Lihe Wang. Fundamental solutions of a class of homogeneous integro-differential elliptic equations. Discrete & Continuous Dynamical Systems, 2019, 39 (3) : 1237-1256. doi: 10.3934/dcds.2019053

[7]

Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160

[8]

Martin Bohner, Osman Tunç. Qualitative analysis of integro-differential equations with variable retardation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021059

[9]

Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 911-923. doi: 10.3934/dcdss.2020053

[10]

Tonny Paul, A. Anguraj. Existence and uniqueness of nonlinear impulsive integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1191-1198. doi: 10.3934/dcdsb.2006.6.1191

[11]

Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541

[12]

Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

[13]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

[14]

Eitan Tadmor, Prashant Athavale. Multiscale image representation using novel integro-differential equations. Inverse Problems & Imaging, 2009, 3 (4) : 693-710. doi: 10.3934/ipi.2009.3.693

[15]

Patricio Felmer, Ying Wang. Qualitative properties of positive solutions for mixed integro-differential equations. Discrete & Continuous Dynamical Systems, 2019, 39 (1) : 369-393. doi: 10.3934/dcds.2019015

[16]

Sebti Kerbal, Yang Jiang. General integro-differential equations and optimal controls on Banach spaces. Journal of Industrial & Management Optimization, 2007, 3 (1) : 119-128. doi: 10.3934/jimo.2007.3.119

[17]

Ji Shu, Linyan Li, Xin Huang, Jian Zhang. Limiting behavior of fractional stochastic integro-Differential equations on unbounded domains. Mathematical Control & Related Fields, 2021, 11 (4) : 715-737. doi: 10.3934/mcrf.2020044

[18]

Michel Chipot, Senoussi Guesmia. On a class of integro-differential problems. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1249-1262. doi: 10.3934/cpaa.2010.9.1249

[19]

Paola Loreti, Daniela Sforza. Observability of $N$-dimensional integro-differential systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 745-757. doi: 10.3934/dcdss.2016026

[20]

Luis Silvestre. Hölder continuity for integro-differential parabolic equations with polynomial growth respect to the gradient. Discrete & Continuous Dynamical Systems, 2010, 28 (3) : 1069-1081. doi: 10.3934/dcds.2010.28.1069

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (99)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]