June  2016, 9(3): 631-642. doi: 10.3934/dcdss.2016017

Periodic solutions to nonlocal MEMS equations

1. 

Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11, 22100 Como, Italy

2. 

Dipartimento di Matematica “L. Tonelli”, Università di Pisa, Largo B. Pontecorvo, 5. I-56127 Pisa

Received  March 2015 Revised  February 2016 Published  April 2016

Combining a priori estimates with penalization techniques and an implicit function argument based on Campanato's near operators theory, we obtain the existence of periodic solutions for a fourth order integro-differential equation modelling actuators in MEMS devices.
Citation: Daniele Cassani, Antonio Tarsia. Periodic solutions to nonlocal MEMS equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 631-642. doi: 10.3934/dcdss.2016017
References:
[1]

P. Acquistapace and A. Tarsia, On periodic solutions of non-autonomous second order differential equations in Hilbert spaces,, preprint, (2015). Google Scholar

[2]

C. Baiocchi, Soluzioni ordinarie e generalizzate del problema di Cauchy per equazioni differenziali astratte lineari del secondo ordine in spazi di Hilbert,, Ricerche Mat., 16 (1967), 27. Google Scholar

[3]

E. Berchio, D. Cassani and F. Gazzola, Hardy-Rellich inequalities with boundary remainder terms and applications,, Manuscripta Mathematica, 131 (2010), 427. doi: 10.1007/s00229-009-0328-6. Google Scholar

[4]

S. Campanato, On the condition of nearness between operators,, Ann. Mat. Pura Appl., 167 (1994), 243. doi: 10.1007/BF01760335. Google Scholar

[5]

D. Cassani, J. M. do Ó and N. Ghoussoub, On a fourth order elliptic problem with a singular nonlinearity,, Adv. Nonlinear Stud., 9 (2009), 177. Google Scholar

[6]

D. Cassani, L. Fattorusso and A. Tarsia, Nonlocal dynamic problems with singular nonlinearities and applications to MEMS,, in Analysis and Topology in Nonlinear Differential Equations, 85 (2014), 187. Google Scholar

[7]

D. Cassani, L. Fattorusso and A. Tarsia, Global existence for nonlocal MEMS,, Nonlinear Analysis, 74 (2011), 5722. doi: 10.1016/j.na.2011.05.060. Google Scholar

[8]

D. Cassani, B. Kaltenbacher and A. Lorenzi, Direct and inverse problems related to MEMS,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/10/105002. Google Scholar

[9]

D. Cassani and A. Tarsia, Maximum principle for higher order operators in general domains and applications,, preprint, (2015). Google Scholar

[10]

F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems. Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains,, Lecture Notes in Mathematics, 1991 (2010). doi: 10.1007/978-3-642-12245-3. Google Scholar

[11]

J.-S. Guo, B. Hu and C.-J. Wang, A nonlocal quenching problem arising in a micro-electro mechanical system,, Quart. Appl. Math., 67 (2009), 725. doi: 10.1090/S0033-569X-09-01159-5. Google Scholar

[12]

K. M. Hui, The existence and dynamic properties of a parabolic nonlocal MEMS equation,, Nonlinear Anal., 74 (2011), 298. doi: 10.1016/j.na.2010.08.045. Google Scholar

[13]

N. I. Kavallaris, A. A. Lacey, C. V. Nikolopoulos and D. E. Tzanetis, A hyperbolic non-local problem modelling MEMS technology,, Rocky Mountain J. Math., 41 (2011), 505. doi: 10.1216/RMJ-2011-41-2-505. Google Scholar

[14]

F. H. Lin and Y. S. Yang, Nonlinear non-local elliptic equation modelling electrostatic actuation,, Proc. R. Soc. London, 463 (2007), 1323. doi: 10.1098/rspa.2007.1816. Google Scholar

[15]

J. A. Pelesko and A. A. Triolo, Nonlocal problems in MEMS device control,, J. Engrg. Math., 41 (2001), 345. doi: 10.1023/A:1012292311304. Google Scholar

[16]

A. Tarsia, Differential equations and implicit functions: A generalization of the near operator theorem,, Topol. Methods Nonlinear Anal., 11 (1998), 115. Google Scholar

show all references

References:
[1]

P. Acquistapace and A. Tarsia, On periodic solutions of non-autonomous second order differential equations in Hilbert spaces,, preprint, (2015). Google Scholar

[2]

C. Baiocchi, Soluzioni ordinarie e generalizzate del problema di Cauchy per equazioni differenziali astratte lineari del secondo ordine in spazi di Hilbert,, Ricerche Mat., 16 (1967), 27. Google Scholar

[3]

E. Berchio, D. Cassani and F. Gazzola, Hardy-Rellich inequalities with boundary remainder terms and applications,, Manuscripta Mathematica, 131 (2010), 427. doi: 10.1007/s00229-009-0328-6. Google Scholar

[4]

S. Campanato, On the condition of nearness between operators,, Ann. Mat. Pura Appl., 167 (1994), 243. doi: 10.1007/BF01760335. Google Scholar

[5]

D. Cassani, J. M. do Ó and N. Ghoussoub, On a fourth order elliptic problem with a singular nonlinearity,, Adv. Nonlinear Stud., 9 (2009), 177. Google Scholar

[6]

D. Cassani, L. Fattorusso and A. Tarsia, Nonlocal dynamic problems with singular nonlinearities and applications to MEMS,, in Analysis and Topology in Nonlinear Differential Equations, 85 (2014), 187. Google Scholar

[7]

D. Cassani, L. Fattorusso and A. Tarsia, Global existence for nonlocal MEMS,, Nonlinear Analysis, 74 (2011), 5722. doi: 10.1016/j.na.2011.05.060. Google Scholar

[8]

D. Cassani, B. Kaltenbacher and A. Lorenzi, Direct and inverse problems related to MEMS,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/10/105002. Google Scholar

[9]

D. Cassani and A. Tarsia, Maximum principle for higher order operators in general domains and applications,, preprint, (2015). Google Scholar

[10]

F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems. Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains,, Lecture Notes in Mathematics, 1991 (2010). doi: 10.1007/978-3-642-12245-3. Google Scholar

[11]

J.-S. Guo, B. Hu and C.-J. Wang, A nonlocal quenching problem arising in a micro-electro mechanical system,, Quart. Appl. Math., 67 (2009), 725. doi: 10.1090/S0033-569X-09-01159-5. Google Scholar

[12]

K. M. Hui, The existence and dynamic properties of a parabolic nonlocal MEMS equation,, Nonlinear Anal., 74 (2011), 298. doi: 10.1016/j.na.2010.08.045. Google Scholar

[13]

N. I. Kavallaris, A. A. Lacey, C. V. Nikolopoulos and D. E. Tzanetis, A hyperbolic non-local problem modelling MEMS technology,, Rocky Mountain J. Math., 41 (2011), 505. doi: 10.1216/RMJ-2011-41-2-505. Google Scholar

[14]

F. H. Lin and Y. S. Yang, Nonlinear non-local elliptic equation modelling electrostatic actuation,, Proc. R. Soc. London, 463 (2007), 1323. doi: 10.1098/rspa.2007.1816. Google Scholar

[15]

J. A. Pelesko and A. A. Triolo, Nonlocal problems in MEMS device control,, J. Engrg. Math., 41 (2001), 345. doi: 10.1023/A:1012292311304. Google Scholar

[16]

A. Tarsia, Differential equations and implicit functions: A generalization of the near operator theorem,, Topol. Methods Nonlinear Anal., 11 (1998), 115. Google Scholar

[1]

Nestor Guillen, Russell W. Schwab. Neumann homogenization via integro-differential operators. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3677-3703. doi: 10.3934/dcds.2016.36.3677

[2]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[3]

Tomás Caraballo, P.E. Kloeden. Non-autonomous attractors for integro-differential evolution equations. Discrete & Continuous Dynamical Systems - S, 2009, 2 (1) : 17-36. doi: 10.3934/dcdss.2009.2.17

[4]

Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160

[5]

Narcisa Apreutesei, Arnaud Ducrot, Vitaly Volpert. Travelling waves for integro-differential equations in population dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 541-561. doi: 10.3934/dcdsb.2009.11.541

[6]

Tonny Paul, A. Anguraj. Existence and uniqueness of nonlinear impulsive integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1191-1198. doi: 10.3934/dcdsb.2006.6.1191

[7]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

[8]

Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

[9]

Eitan Tadmor, Prashant Athavale. Multiscale image representation using novel integro-differential equations. Inverse Problems & Imaging, 2009, 3 (4) : 693-710. doi: 10.3934/ipi.2009.3.693

[10]

Sebti Kerbal, Yang Jiang. General integro-differential equations and optimal controls on Banach spaces. Journal of Industrial & Management Optimization, 2007, 3 (1) : 119-128. doi: 10.3934/jimo.2007.3.119

[11]

Patricio Felmer, Ying Wang. Qualitative properties of positive solutions for mixed integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 369-393. doi: 10.3934/dcds.2019015

[12]

Yi Cao, Jianhua Wu, Lihe Wang. Fundamental solutions of a class of homogeneous integro-differential elliptic equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1237-1256. doi: 10.3934/dcds.2019053

[13]

Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 911-923. doi: 10.3934/dcdss.2020053

[14]

Michel Chipot, Senoussi Guesmia. On a class of integro-differential problems. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1249-1262. doi: 10.3934/cpaa.2010.9.1249

[15]

Paola Loreti, Daniela Sforza. Observability of $N$-dimensional integro-differential systems. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 745-757. doi: 10.3934/dcdss.2016026

[16]

Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517

[17]

Luis Silvestre. Hölder continuity for integro-differential parabolic equations with polynomial growth respect to the gradient. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1069-1081. doi: 10.3934/dcds.2010.28.1069

[18]

Kyudong Choi. Persistence of Hölder continuity for non-local integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1741-1771. doi: 10.3934/dcds.2013.33.1741

[19]

Xu Chen, Jianping Wan. Integro-differential equations for foreign currency option prices in exponential Lévy models. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 529-537. doi: 10.3934/dcdsb.2007.8.529

[20]

Jaan Janno, Kairi Kasemets. A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. Inverse Problems & Imaging, 2009, 3 (1) : 17-41. doi: 10.3934/ipi.2009.3.17

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]