-
Previous Article
Degenerate flux for dynamic boundary conditions in parabolic and hyperbolic equations
- DCDS-S Home
- This Issue
-
Next Article
Periodic solutions to nonlocal MEMS equations
The problem of detecting corrosion by an electric measurement revisited
1. | Institut Élie Cartan de Lorraine, UMR CNRS 7502, Université de Lorraine-Metz, Boulevard des Aiguillettes, BP 70239, 54506 Vandoeuvre les Nancy cedex, Ile du Saulcy, 57045 Metz cedex 01, France |
2. | Faculté des Sciences de Bizerte, Département des Mathématiques, 7021 Jarzouna Bizerte, Tunisia |
References:
[1] |
G. Alessandrini, L. Del Piero and L. Rondi, Stable determination of corrosion by a single electrostatic boundary measurement,, Inverse problems, 19 (2003), 973.
doi: 10.1088/0266-5611/19/4/312. |
[2] |
G. Alessandrini, E. Sincich and S. Vessella, Stable determination of surface impedance on a rough obstacle by far field data,, Inverse Problems and Imaging, 7 (2013), 341.
doi: 10.3934/ipi.2013.7.341. |
[3] |
M. Bellassoued, M. Choulli and A. Jbalia, Stability of the determination of the surface impedance of an obstacle from the scattering amplitude,, Math. Methods Appl. Sci., 36 (2013), 2429.
doi: 10.1002/mma.2762. |
[4] |
M. Bellassoued, J. Cheng and M. Choulli, Stability estimate for an inverse boundary coefficient problem in thermal imaging,, J. Math Anal. Appl., 343 (2008), 328.
doi: 10.1016/j.jmaa.2008.01.066. |
[5] |
L. Bourgeois, About stability and regularization of ill-posed elliptic Cauchy problems: the case of $C^{1,1}$ domains,, Math. Model. Numer. Anal., 44 (2010), 715.
doi: 10.1051/m2an/2010016. |
[6] |
S. Chaabane, I. Fellah, M. Jaoua and J. Leblond, Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems,, Inverse Problems, 20 (2004), 47.
doi: 10.1088/0266-5611/20/1/003. |
[7] |
S. Chaabane and M. Jaoua, Identification of Robin coefficients by the means of boundary measurements,, Inverse Problems, 15 (1999), 1425.
doi: 10.1088/0266-5611/15/6/303. |
[8] |
J. Cheng, M. Choulli and J. Lin, Stable determination of a boundary coefficient in an elliptic equation,, Math. Models Methods Appl. Sci., 18 (2008), 107.
doi: 10.1142/S0218202508002620. |
[9] |
J. Cheng, M. Choulli and X. Yang, An iterative BEM for the inverse problem of detecting corrosion in a pipe,, Numer. Math. J. Chinese Univ., 14 (2005), 252.
|
[10] |
M. Choulli, Stability estimates for an inverse elliptic problem,, J. Inverse Ill-Posed Probl., 10 (2002), 601.
doi: 10.1515/jiip.2002.10.6.601. |
[11] |
M. Choulli, An inverse problem in corrosion detection: Stability estimates,, J. Inverse Ill-Posed Probl., 12 (2004), 349.
doi: 10.1515/1569394042248247. |
[12] |
M. Choulli, Une Introduction Aux Problèmes Inverses Elliptiques et Paraboliques,, SMAI-Springer, (2009).
doi: 10.1007/978-3-642-02460-3. |
[13] |
M. Choulli and F. Triki, New stability estimates for the inverse medium problem with internal data,, SIAM J. Math. Anal., 47 (2015), 1778.
doi: 10.1137/140988577. |
[14] |
M. Choulli, Applications of elliptic Carleman inequalities,, to appear in BCAM SpringerBriefs., (). Google Scholar |
[15] |
D. Fasino and G. Inglese, An inverse Robin problem for Laplace's equation: Theoretical and numerical methods},, Inverse Problems, 15 (1999), 41.
doi: 10.1088/0266-5611/15/1/008. |
[16] |
G. Inglese, An inverse problem in corrosion detection,, Inverse Problems, 13 (1997), 977.
doi: 10.1088/0266-5611/13/4/006. |
[17] |
E. Sincich, Stable determination of the surface impedance of an obstacle by far field measurements,, SIAM J. Math. Anal., 38 (2006), 434.
doi: 10.1137/050631513. |
[18] |
E. Sincich, Lipschitz stability for the inverse Robin problem,, Inverse Problems, 23 (2007), 1311.
doi: 10.1088/0266-5611/23/3/027. |
[19] |
E. Sincich, Smoothness dependent stability in corrosion detection,, J. Math. Anal. Appl., 426 (2015), 364.
doi: 10.1016/j.jmaa.2014.10.036. |
show all references
References:
[1] |
G. Alessandrini, L. Del Piero and L. Rondi, Stable determination of corrosion by a single electrostatic boundary measurement,, Inverse problems, 19 (2003), 973.
doi: 10.1088/0266-5611/19/4/312. |
[2] |
G. Alessandrini, E. Sincich and S. Vessella, Stable determination of surface impedance on a rough obstacle by far field data,, Inverse Problems and Imaging, 7 (2013), 341.
doi: 10.3934/ipi.2013.7.341. |
[3] |
M. Bellassoued, M. Choulli and A. Jbalia, Stability of the determination of the surface impedance of an obstacle from the scattering amplitude,, Math. Methods Appl. Sci., 36 (2013), 2429.
doi: 10.1002/mma.2762. |
[4] |
M. Bellassoued, J. Cheng and M. Choulli, Stability estimate for an inverse boundary coefficient problem in thermal imaging,, J. Math Anal. Appl., 343 (2008), 328.
doi: 10.1016/j.jmaa.2008.01.066. |
[5] |
L. Bourgeois, About stability and regularization of ill-posed elliptic Cauchy problems: the case of $C^{1,1}$ domains,, Math. Model. Numer. Anal., 44 (2010), 715.
doi: 10.1051/m2an/2010016. |
[6] |
S. Chaabane, I. Fellah, M. Jaoua and J. Leblond, Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems,, Inverse Problems, 20 (2004), 47.
doi: 10.1088/0266-5611/20/1/003. |
[7] |
S. Chaabane and M. Jaoua, Identification of Robin coefficients by the means of boundary measurements,, Inverse Problems, 15 (1999), 1425.
doi: 10.1088/0266-5611/15/6/303. |
[8] |
J. Cheng, M. Choulli and J. Lin, Stable determination of a boundary coefficient in an elliptic equation,, Math. Models Methods Appl. Sci., 18 (2008), 107.
doi: 10.1142/S0218202508002620. |
[9] |
J. Cheng, M. Choulli and X. Yang, An iterative BEM for the inverse problem of detecting corrosion in a pipe,, Numer. Math. J. Chinese Univ., 14 (2005), 252.
|
[10] |
M. Choulli, Stability estimates for an inverse elliptic problem,, J. Inverse Ill-Posed Probl., 10 (2002), 601.
doi: 10.1515/jiip.2002.10.6.601. |
[11] |
M. Choulli, An inverse problem in corrosion detection: Stability estimates,, J. Inverse Ill-Posed Probl., 12 (2004), 349.
doi: 10.1515/1569394042248247. |
[12] |
M. Choulli, Une Introduction Aux Problèmes Inverses Elliptiques et Paraboliques,, SMAI-Springer, (2009).
doi: 10.1007/978-3-642-02460-3. |
[13] |
M. Choulli and F. Triki, New stability estimates for the inverse medium problem with internal data,, SIAM J. Math. Anal., 47 (2015), 1778.
doi: 10.1137/140988577. |
[14] |
M. Choulli, Applications of elliptic Carleman inequalities,, to appear in BCAM SpringerBriefs., (). Google Scholar |
[15] |
D. Fasino and G. Inglese, An inverse Robin problem for Laplace's equation: Theoretical and numerical methods},, Inverse Problems, 15 (1999), 41.
doi: 10.1088/0266-5611/15/1/008. |
[16] |
G. Inglese, An inverse problem in corrosion detection,, Inverse Problems, 13 (1997), 977.
doi: 10.1088/0266-5611/13/4/006. |
[17] |
E. Sincich, Stable determination of the surface impedance of an obstacle by far field measurements,, SIAM J. Math. Anal., 38 (2006), 434.
doi: 10.1137/050631513. |
[18] |
E. Sincich, Lipschitz stability for the inverse Robin problem,, Inverse Problems, 23 (2007), 1311.
doi: 10.1088/0266-5611/23/3/027. |
[19] |
E. Sincich, Smoothness dependent stability in corrosion detection,, J. Math. Anal. Appl., 426 (2015), 364.
doi: 10.1016/j.jmaa.2014.10.036. |
[1] |
Aymen Jbalia. On a logarithmic stability estimate for an inverse heat conduction problem. Mathematical Control & Related Fields, 2019, 9 (2) : 277-287. doi: 10.3934/mcrf.2019014 |
[2] |
Eva Sincich, Mourad Sini. Local stability for soft obstacles by a single measurement. Inverse Problems & Imaging, 2008, 2 (2) : 301-315. doi: 10.3934/ipi.2008.2.301 |
[3] |
Jijun Liu, Gen Nakamura. Recovering the boundary corrosion from electrical potential distribution using partial boundary data. Inverse Problems & Imaging, 2017, 11 (3) : 521-538. doi: 10.3934/ipi.2017024 |
[4] |
Max Fathi, Emanuel Indrei, Michel Ledoux. Quantitative logarithmic Sobolev inequalities and stability estimates. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6835-6853. doi: 10.3934/dcds.2016097 |
[5] |
Michel Cristofol, Shumin Li, Eric Soccorsi. Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary. Mathematical Control & Related Fields, 2016, 6 (3) : 407-427. doi: 10.3934/mcrf.2016009 |
[6] |
Alex H. Ardila. Stability of ground states for logarithmic Schrödinger equation with a $δ^{\prime}$-interaction. Evolution Equations & Control Theory, 2017, 6 (2) : 155-175. doi: 10.3934/eect.2017009 |
[7] |
Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231 |
[8] |
Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424 |
[9] |
Shitao Liu. Recovery of the sound speed and initial displacement for the wave equation by means of a single Dirichlet boundary measurement. Evolution Equations & Control Theory, 2013, 2 (2) : 355-364. doi: 10.3934/eect.2013.2.355 |
[10] |
L.R. Ritter, Akif Ibragimov, Jay R. Walton, Catherine J. McNeal. Stability analysis using an energy estimate approach of a reaction-diffusion model of atherogenesis. Conference Publications, 2009, 2009 (Special) : 630-639. doi: 10.3934/proc.2009.2009.630 |
[11] |
Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014 |
[12] |
J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176 |
[13] |
Peter C. Gibson. On the measurement operator for scattering in layered media. Inverse Problems & Imaging, 2017, 11 (1) : 87-97. doi: 10.3934/ipi.2017005 |
[14] |
Fioralba Cakoni, Rainer Kress. Integral equations for inverse problems in corrosion detection from partial Cauchy data. Inverse Problems & Imaging, 2007, 1 (2) : 229-245. doi: 10.3934/ipi.2007.1.229 |
[15] |
Claire Chainais-Hillairet, Ingrid Lacroix-Violet. On the existence of solutions for a drift-diffusion system arising in corrosion modeling. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 77-92. doi: 10.3934/dcdsb.2015.20.77 |
[16] |
Anna Gierzkiewicz, Klaudiusz Wójcik. Lefschetz sequences and detecting periodic points. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 81-100. doi: 10.3934/dcds.2012.32.81 |
[17] |
Jochen Merker. Generalizations of logarithmic Sobolev inequalities. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 329-338. doi: 10.3934/dcdss.2008.1.329 |
[18] |
Maria Colombo, Gianluca Crippa, Stefano Spirito. Logarithmic estimates for continuity equations. Networks & Heterogeneous Media, 2016, 11 (2) : 301-311. doi: 10.3934/nhm.2016.11.301 |
[19] |
Jon Chaika, Rodrigo Treviño. Logarithmic laws and unique ergodicity. Journal of Modern Dynamics, 2017, 11: 563-588. doi: 10.3934/jmd.2017022 |
[20] |
Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305 |
2018 Impact Factor: 0.545
Tools
Metrics
Other articles
by authors
[Back to Top]