\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The problem of detecting corrosion by an electric measurement revisited

Abstract / Introduction Related Papers Cited by
  • We establish a logarithmic stability estimate for the problem of detecting corrosion by a single electric measurement. We give a proof based on an adaptation of the method initiated in [3] for solving the inverse problem of recovering the surface impedance of an obstacle from the scattering amplitude. The key idea consists in estimating accurately a lower bound of the local $L^2$-norm at the boundary, of the solution of the boundary value problem used in modeling the problem of detection corrosion by an electric measurement.
    Mathematics Subject Classification: Primary: 35R30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Alessandrini, L. Del Piero and L. Rondi, Stable determination of corrosion by a single electrostatic boundary measurement, Inverse problems, 19 (2003), 973-984.doi: 10.1088/0266-5611/19/4/312.

    [2]

    G. Alessandrini, E. Sincich and S. Vessella, Stable determination of surface impedance on a rough obstacle by far field data, Inverse Problems and Imaging, 7 (2013), 341-351.doi: 10.3934/ipi.2013.7.341.

    [3]

    M. Bellassoued, M. Choulli and A. Jbalia, Stability of the determination of the surface impedance of an obstacle from the scattering amplitude, Math. Methods Appl. Sci., 36 (2013), 2429-2448.doi: 10.1002/mma.2762.

    [4]

    M. Bellassoued, J. Cheng and M. Choulli, Stability estimate for an inverse boundary coefficient problem in thermal imaging, J. Math Anal. Appl., 343 (2008), 328-336.doi: 10.1016/j.jmaa.2008.01.066.

    [5]

    L. Bourgeois, About stability and regularization of ill-posed elliptic Cauchy problems: the case of $C^{1,1}$ domains, Math. Model. Numer. Anal., 44 (2010), 715-735.doi: 10.1051/m2an/2010016.

    [6]

    S. Chaabane, I. Fellah, M. Jaoua and J. Leblond, Logarithmic stability estimates for a Robin coefficient in two-dimensional Laplace inverse problems, Inverse Problems, 20 (2004), 47-59.doi: 10.1088/0266-5611/20/1/003.

    [7]

    S. Chaabane and M. Jaoua, Identification of Robin coefficients by the means of boundary measurements, Inverse Problems, 15 (1999), 1425-1438.doi: 10.1088/0266-5611/15/6/303.

    [8]

    J. Cheng, M. Choulli and J. Lin, Stable determination of a boundary coefficient in an elliptic equation, Math. Models Methods Appl. Sci., 18 (2008), 107-123.doi: 10.1142/S0218202508002620.

    [9]

    J. Cheng, M. Choulli and X. Yang, An iterative BEM for the inverse problem of detecting corrosion in a pipe, Numer. Math. J. Chinese Univ., 14 (2005), 252-266.

    [10]

    M. Choulli, Stability estimates for an inverse elliptic problem, J. Inverse Ill-Posed Probl., 10 (2002), 601-610.doi: 10.1515/jiip.2002.10.6.601.

    [11]

    M. Choulli, An inverse problem in corrosion detection: Stability estimates, J. Inverse Ill-Posed Probl., 12 (2004), 349-367.doi: 10.1515/1569394042248247.

    [12]

    M. Choulli, Une Introduction Aux Problèmes Inverses Elliptiques et Paraboliques, SMAI-Springer, Berlin, 2009.doi: 10.1007/978-3-642-02460-3.

    [13]

    M. Choulli and F. Triki, New stability estimates for the inverse medium problem with internal data, SIAM J. Math. Anal., 47 (2015), 1778-1799.doi: 10.1137/140988577.

    [14]

    M. Choulli, Applications of elliptic Carleman inequalities, to appear in BCAM SpringerBriefs.

    [15]

    D. Fasino and G. Inglese, An inverse Robin problem for Laplace's equation: Theoretical and numerical methods}, Inverse Problems, 15 (1999), 41-48.doi: 10.1088/0266-5611/15/1/008.

    [16]

    G. Inglese, An inverse problem in corrosion detection, Inverse Problems, 13 (1997), 977-994.doi: 10.1088/0266-5611/13/4/006.

    [17]

    E. Sincich, Stable determination of the surface impedance of an obstacle by far field measurements, SIAM J. Math. Anal., 38 (2006), 434-451.doi: 10.1137/050631513.

    [18]

    E. Sincich, Lipschitz stability for the inverse Robin problem, Inverse Problems, 23 (2007), 1311-1326.doi: 10.1088/0266-5611/23/3/027.

    [19]

    E. Sincich, Smoothness dependent stability in corrosion detection, J. Math. Anal. Appl., 426 (2015), 364-379.doi: 10.1016/j.jmaa.2014.10.036.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(65) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return