\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Degenerate flux for dynamic boundary conditions in parabolic and hyperbolic equations

Abstract Related Papers Cited by
  • In the dynamic or Wentzell boundary condition for elliptic, parabolic and hyperbolic partial differential equations, the positive flux coefficient $% \beta $ determines the weighted surface measure $dS/\beta $ on the boundary of the given spatial domain, in the appropriate Hilbert space that makes the generator for the problem selfadjoint. Usually, $\beta $ is continuous and bounded away from both zero and infinity, and thus $L^{2}\left( \partial \Omega ,dS\right) $ and $L^{2}\left( \partial \Omega ,dS/\beta \right) $ are equal as sets. In this paper this restriction is eliminated, so that both zero and infinity are allowed to be limiting values for $\beta $. An application includes the parabolic asymptotics for the Wentzell telegraph equation and strongly damped Wentzell wave equation with general $\beta $.
    Mathematics Subject Classification: Primary: 34G10; Secondary: 35L10, 35L35, 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Clarke, E. C. Eckstein and J. A. Goldstein, Asymptotics analysis of the abstract telegraph equation, Differential Integral Equations, 21 (2008), 433-442.

    [2]

    T. Clarke, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The Wentzell telegraph equation: Asymptotics and continuous dependence on the boundary conditions, Commun. Appl. Anal., 15 (2011), 313-324.

    [3]

    R. Clendenen, Wentzell Boundary Conditions with General Weights and Asymptotic Parabolicity for Strongly Damped Waves, Thesis (Ph.D.)-The University of Memphis, 2014.

    [4]

    G. M. Coclite, A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Continuous dependence on the boundary conditions for the Wentzell Laplacian, Semigroup Forum, 77 (2008), 101-108.doi: 10.1007/s00233-008-9068-2.

    [5]

    G. M. Coclite, A. Favini, C. G. Gal, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, The role of Wentzell boundary conditions in linear and nonlinear analysis, in Advances in nonlinear analysis: Theory, methods and applications, Math. Probl. Eng. Aerosp. Sci. 3, Camb. Sci. Publ., Cambridge, (2009), 277-289.

    [6]

    G. M. Coclite, A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Continuous dependence in hyperbolic problems with Wentzell boundary conditions, Commun. Pure Appl. Anal., 13 (2014), 419-433.doi: 10.3934/cpaa.2014.13.419.

    [7]

    A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups, and the angle concavity theorem, Math. Nachr., 283 (2010), 504-521.doi: 10.1002/mana.200910086.

    [8]

    A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary conditions, J. Evol. Equ., 2 (2002), 1-19.doi: 10.1007/s00028-002-8077-y.

    [9]

    G. Fragnelli, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Asymptotic parabolicity for strongly damped wave equations, in Spectral Analysis, Differential Equations and Mathematical Physics: A festschrift in honor of Fritz Gesztesy's 60th birthday, Proc. Sympos. in Pure Math. 87 Amer. Math. Soc., Providence, RI, (2013), 119-131.doi: 10.1090/pspum/087/01432.

    [10]

    J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, Oxford, New York, 1985.

    [11]

    P. D. Lax, Functional Analysis, Wiley-Interscience, New York, 2002.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(84) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return