-
Previous Article
A singular limit problem for the Ibragimov-Shabat equation
- DCDS-S Home
- This Issue
-
Next Article
The problem of detecting corrosion by an electric measurement revisited
Degenerate flux for dynamic boundary conditions in parabolic and hyperbolic equations
1. | Department of Mathematical Sciences, University of Memphis, Memphis, Tennessee 38152, United States |
2. | The University of Memphis, Department of Mathematical Sciences, Memphis, TN 38152 |
3. | Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, United States |
References:
[1] |
T. Clarke, E. C. Eckstein and J. A. Goldstein, Asymptotics analysis of the abstract telegraph equation, Differential Integral Equations, 21 (2008), 433-442. |
[2] |
T. Clarke, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The Wentzell telegraph equation: Asymptotics and continuous dependence on the boundary conditions, Commun. Appl. Anal., 15 (2011), 313-324. |
[3] |
R. Clendenen, Wentzell Boundary Conditions with General Weights and Asymptotic Parabolicity for Strongly Damped Waves, Thesis (Ph.D.)-The University of Memphis, 2014. |
[4] |
G. M. Coclite, A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Continuous dependence on the boundary conditions for the Wentzell Laplacian, Semigroup Forum, 77 (2008), 101-108.
doi: 10.1007/s00233-008-9068-2. |
[5] |
G. M. Coclite, A. Favini, C. G. Gal, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, The role of Wentzell boundary conditions in linear and nonlinear analysis, in Advances in nonlinear analysis: Theory, methods and applications, Math. Probl. Eng. Aerosp. Sci. 3, Camb. Sci. Publ., Cambridge, (2009), 277-289. |
[6] |
G. M. Coclite, A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Continuous dependence in hyperbolic problems with Wentzell boundary conditions, Commun. Pure Appl. Anal., 13 (2014), 419-433.
doi: 10.3934/cpaa.2014.13.419. |
[7] |
A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups, and the angle concavity theorem, Math. Nachr., 283 (2010), 504-521.
doi: 10.1002/mana.200910086. |
[8] |
A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary conditions, J. Evol. Equ., 2 (2002), 1-19.
doi: 10.1007/s00028-002-8077-y. |
[9] |
G. Fragnelli, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Asymptotic parabolicity for strongly damped wave equations, in Spectral Analysis, Differential Equations and Mathematical Physics: A festschrift in honor of Fritz Gesztesy's 60th birthday, Proc. Sympos. in Pure Math. 87 Amer. Math. Soc., Providence, RI, (2013), 119-131.
doi: 10.1090/pspum/087/01432. |
[10] |
J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, Oxford, New York, 1985. |
[11] |
P. D. Lax, Functional Analysis, Wiley-Interscience, New York, 2002. |
show all references
References:
[1] |
T. Clarke, E. C. Eckstein and J. A. Goldstein, Asymptotics analysis of the abstract telegraph equation, Differential Integral Equations, 21 (2008), 433-442. |
[2] |
T. Clarke, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The Wentzell telegraph equation: Asymptotics and continuous dependence on the boundary conditions, Commun. Appl. Anal., 15 (2011), 313-324. |
[3] |
R. Clendenen, Wentzell Boundary Conditions with General Weights and Asymptotic Parabolicity for Strongly Damped Waves, Thesis (Ph.D.)-The University of Memphis, 2014. |
[4] |
G. M. Coclite, A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Continuous dependence on the boundary conditions for the Wentzell Laplacian, Semigroup Forum, 77 (2008), 101-108.
doi: 10.1007/s00233-008-9068-2. |
[5] |
G. M. Coclite, A. Favini, C. G. Gal, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, The role of Wentzell boundary conditions in linear and nonlinear analysis, in Advances in nonlinear analysis: Theory, methods and applications, Math. Probl. Eng. Aerosp. Sci. 3, Camb. Sci. Publ., Cambridge, (2009), 277-289. |
[6] |
G. M. Coclite, A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Continuous dependence in hyperbolic problems with Wentzell boundary conditions, Commun. Pure Appl. Anal., 13 (2014), 419-433.
doi: 10.3934/cpaa.2014.13.419. |
[7] |
A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups, and the angle concavity theorem, Math. Nachr., 283 (2010), 504-521.
doi: 10.1002/mana.200910086. |
[8] |
A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary conditions, J. Evol. Equ., 2 (2002), 1-19.
doi: 10.1007/s00028-002-8077-y. |
[9] |
G. Fragnelli, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Asymptotic parabolicity for strongly damped wave equations, in Spectral Analysis, Differential Equations and Mathematical Physics: A festschrift in honor of Fritz Gesztesy's 60th birthday, Proc. Sympos. in Pure Math. 87 Amer. Math. Soc., Providence, RI, (2013), 119-131.
doi: 10.1090/pspum/087/01432. |
[10] |
J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, Oxford, New York, 1985. |
[11] |
P. D. Lax, Functional Analysis, Wiley-Interscience, New York, 2002. |
[1] |
Davide Guidetti. On hyperbolic mixed problems with dynamic and Wentzell boundary conditions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3461-3471. doi: 10.3934/dcdss.2020239 |
[2] |
Davide Guidetti. Parabolic problems with general Wentzell boundary conditions and diffusion on the boundary. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1401-1417. doi: 10.3934/cpaa.2016.15.1401 |
[3] |
Mahamadi Warma. Semi linear parabolic equations with nonlinear general Wentzell boundary conditions. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5493-5506. doi: 10.3934/dcds.2013.33.5493 |
[4] |
Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations and Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020 |
[5] |
Mustapha Mokhtar-Kharroubi, Quentin Richard. Time asymptotics of structured populations with diffusion and dynamic boundary conditions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4087-4116. doi: 10.3934/dcdsb.2018127 |
[6] |
Giuseppe Maria Coclite, Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Continuous dependence in hyperbolic problems with Wentzell boundary conditions. Communications on Pure and Applied Analysis, 2014, 13 (1) : 419-433. doi: 10.3934/cpaa.2014.13.419 |
[7] |
Antonio Suárez. A logistic equation with degenerate diffusion and Robin boundary conditions. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1255-1267. doi: 10.3934/cpaa.2008.7.1255 |
[8] |
Paul Sacks, Mahamadi Warma. Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 761-787. doi: 10.3934/dcds.2014.34.761 |
[9] |
Alassane Niang. Boundary regularity for a degenerate elliptic equation with mixed boundary conditions. Communications on Pure and Applied Analysis, 2019, 18 (1) : 107-128. doi: 10.3934/cpaa.2019007 |
[10] |
Davide Guidetti. Classical solutions to quasilinear parabolic problems with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 717-736. doi: 10.3934/dcdss.2016024 |
[11] |
Ciprian G. Gal, Mahamadi Warma. Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions. Evolution Equations and Control Theory, 2016, 5 (1) : 61-103. doi: 10.3934/eect.2016.5.61 |
[12] |
Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Dynamic boundary conditions as limit of singularly perturbed parabolic problems. Conference Publications, 2011, 2011 (Special) : 737-746. doi: 10.3934/proc.2011.2011.737 |
[13] |
Ciprian G. Gal, Hao Wu. Asymptotic behavior of a Cahn-Hilliard equation with Wentzell boundary conditions and mass conservation. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 1041-1063. doi: 10.3934/dcds.2008.22.1041 |
[14] |
Yoshifumi Mimura. Critical mass of degenerate Keller-Segel system with no-flux and Neumann boundary conditions. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1603-1630. doi: 10.3934/dcds.2017066 |
[15] |
Genni Fragnelli, Gisèle Ruiz Goldstein, Jerome Goldstein, Rosa Maria Mininni, Silvia Romanelli. Generalized Wentzell boundary conditions for second order operators with interior degeneracy. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 697-715. doi: 10.3934/dcdss.2016023 |
[16] |
Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Enrico Obrecht, Silvia Romanelli. Nonsymmetric elliptic operators with Wentzell boundary conditions in general domains. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2475-2487. doi: 10.3934/cpaa.2016045 |
[17] |
Abdelaziz Khoutaibi, Lahcen Maniar. Null controllability for a heat equation with dynamic boundary conditions and drift terms. Evolution Equations and Control Theory, 2020, 9 (2) : 535-559. doi: 10.3934/eect.2020023 |
[18] |
Nicolas Fourrier, Irena Lasiecka. Regularity and stability of a wave equation with a strong damping and dynamic boundary conditions. Evolution Equations and Control Theory, 2013, 2 (4) : 631-667. doi: 10.3934/eect.2013.2.631 |
[19] |
Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275 |
[20] |
Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]