June  2016, 9(3): 651-660. doi: 10.3934/dcdss.2016019

Degenerate flux for dynamic boundary conditions in parabolic and hyperbolic equations

1. 

Department of Mathematical Sciences, University of Memphis, Memphis, Tennessee 38152, United States

2. 

The University of Memphis, Department of Mathematical Sciences, Memphis, TN 38152

3. 

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, United States

Received  April 2015 Revised  October 2015 Published  April 2016

In the dynamic or Wentzell boundary condition for elliptic, parabolic and hyperbolic partial differential equations, the positive flux coefficient $% \beta $ determines the weighted surface measure $dS/\beta $ on the boundary of the given spatial domain, in the appropriate Hilbert space that makes the generator for the problem selfadjoint. Usually, $\beta $ is continuous and bounded away from both zero and infinity, and thus $L^{2}\left( \partial \Omega ,dS\right) $ and $L^{2}\left( \partial \Omega ,dS/\beta \right) $ are equal as sets. In this paper this restriction is eliminated, so that both zero and infinity are allowed to be limiting values for $\beta $. An application includes the parabolic asymptotics for the Wentzell telegraph equation and strongly damped Wentzell wave equation with general $\beta $.
Citation: Raluca Clendenen, Gisèle Ruiz Goldstein, Jerome A. Goldstein. Degenerate flux for dynamic boundary conditions in parabolic and hyperbolic equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 651-660. doi: 10.3934/dcdss.2016019
References:
[1]

T. Clarke, E. C. Eckstein and J. A. Goldstein, Asymptotics analysis of the abstract telegraph equation,, Differential Integral Equations, 21 (2008), 433.   Google Scholar

[2]

T. Clarke, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The Wentzell telegraph equation: Asymptotics and continuous dependence on the boundary conditions,, Commun. Appl. Anal., 15 (2011), 313.   Google Scholar

[3]

R. Clendenen, Wentzell Boundary Conditions with General Weights and Asymptotic Parabolicity for Strongly Damped Waves,, Thesis (Ph.D.)-The University of Memphis, (2014).   Google Scholar

[4]

G. M. Coclite, A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Continuous dependence on the boundary conditions for the Wentzell Laplacian,, Semigroup Forum, 77 (2008), 101.  doi: 10.1007/s00233-008-9068-2.  Google Scholar

[5]

G. M. Coclite, A. Favini, C. G. Gal, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, The role of Wentzell boundary conditions in linear and nonlinear analysis,, in Advances in nonlinear analysis: Theory, 3 (2009), 277.   Google Scholar

[6]

G. M. Coclite, A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Continuous dependence in hyperbolic problems with Wentzell boundary conditions,, Commun. Pure Appl. Anal., 13 (2014), 419.  doi: 10.3934/cpaa.2014.13.419.  Google Scholar

[7]

A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups, and the angle concavity theorem,, Math. Nachr., 283 (2010), 504.  doi: 10.1002/mana.200910086.  Google Scholar

[8]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary conditions,, J. Evol. Equ., 2 (2002), 1.  doi: 10.1007/s00028-002-8077-y.  Google Scholar

[9]

G. Fragnelli, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Asymptotic parabolicity for strongly damped wave equations,, in Spectral Analysis, 87 (2013), 119.  doi: 10.1090/pspum/087/01432.  Google Scholar

[10]

J. A. Goldstein, Semigroups of Linear Operators and Applications,, Oxford University Press, (1985).   Google Scholar

[11]

P. D. Lax, Functional Analysis,, Wiley-Interscience, (2002).   Google Scholar

show all references

References:
[1]

T. Clarke, E. C. Eckstein and J. A. Goldstein, Asymptotics analysis of the abstract telegraph equation,, Differential Integral Equations, 21 (2008), 433.   Google Scholar

[2]

T. Clarke, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The Wentzell telegraph equation: Asymptotics and continuous dependence on the boundary conditions,, Commun. Appl. Anal., 15 (2011), 313.   Google Scholar

[3]

R. Clendenen, Wentzell Boundary Conditions with General Weights and Asymptotic Parabolicity for Strongly Damped Waves,, Thesis (Ph.D.)-The University of Memphis, (2014).   Google Scholar

[4]

G. M. Coclite, A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Continuous dependence on the boundary conditions for the Wentzell Laplacian,, Semigroup Forum, 77 (2008), 101.  doi: 10.1007/s00233-008-9068-2.  Google Scholar

[5]

G. M. Coclite, A. Favini, C. G. Gal, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, The role of Wentzell boundary conditions in linear and nonlinear analysis,, in Advances in nonlinear analysis: Theory, 3 (2009), 277.   Google Scholar

[6]

G. M. Coclite, A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Continuous dependence in hyperbolic problems with Wentzell boundary conditions,, Commun. Pure Appl. Anal., 13 (2014), 419.  doi: 10.3934/cpaa.2014.13.419.  Google Scholar

[7]

A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups, and the angle concavity theorem,, Math. Nachr., 283 (2010), 504.  doi: 10.1002/mana.200910086.  Google Scholar

[8]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary conditions,, J. Evol. Equ., 2 (2002), 1.  doi: 10.1007/s00028-002-8077-y.  Google Scholar

[9]

G. Fragnelli, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Asymptotic parabolicity for strongly damped wave equations,, in Spectral Analysis, 87 (2013), 119.  doi: 10.1090/pspum/087/01432.  Google Scholar

[10]

J. A. Goldstein, Semigroups of Linear Operators and Applications,, Oxford University Press, (1985).   Google Scholar

[11]

P. D. Lax, Functional Analysis,, Wiley-Interscience, (2002).   Google Scholar

[1]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[2]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[3]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[4]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[5]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[6]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[7]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[8]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[9]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[10]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[11]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[14]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[15]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[16]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[17]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[18]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[19]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[20]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (1)

[Back to Top]