-
Previous Article
$1$-dimensional Harnack estimates
- DCDS-S Home
- This Issue
-
Next Article
Degenerate flux for dynamic boundary conditions in parabolic and hyperbolic equations
A singular limit problem for the Ibragimov-Shabat equation
1. | Department of Mathematics, University of Bari, Via E. Orabona 4, I--70125 Bari |
2. | Department of Science and Methods for Engineering, University of Modena and Reggio Emilia, via G. Amendola 2, 42122 Reggio Emilia |
References:
[1] |
M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math., 53 (1974), 249-315.
doi: 10.1002/sapm1974534249. |
[2] |
R. Beals, M. Rabelo and K. Tenenblat, Bäcklund transformations and inverse scattering solutions for some pseudospherical surface equations, Stud. Appl. Math., 81 (1989), 125-151.
doi: 10.1002/sapm1989812125. |
[3] |
G. M. Coclite and L. di Ruvo, Well-posedness results for the short pulse equation, Z. Angew. Math. Phys., 66 (2015), 1529-1557.
doi: 10.1007/s00033-014-0478-6. |
[4] |
G. M. Coclite and L. di Ruvo, On the Wellposedness of the exp-Rabelo equation,, Ann. Mat. Pura Appl., ().
doi: 10.1007/s10231-015-0497-8. |
[5] |
G. M. Coclite, L. di Ruvo, J. Ernest and S. Mishra, Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes, Netw. Heterog. Media., 8 (2013), 969-984.
doi: 10.3934/nhm.2013.8.969. |
[6] |
G. M. Coclite and K. H. Karlsen, A singular limit problem for conservation laws related to the Camassa-Holm shallow water equation, Comm. Partial Differential Equations, 31 (2006), 1253-1272.
doi: 10.1080/03605300600781600. |
[7] |
R. K. Dodd and R. K. Bullough, Bäcklund transformations for the A.K.N.S. inverse method, Phys. Lett. A, 62 (1977), 70-74.
doi: 10.1016/0375-9601(77)90952-5. |
[8] |
L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Dover, New York, 1960. |
[9] |
E. Goursat, Le Problème de Bäcklund, Mémorial des Sciences Mathématiques, Fasc. VI, Gauthier-Villars, Paris, 1925. |
[10] |
A. H. Khater, D. K. Callebaut, A. A. Abdalla and S. M. Sayed, Exact solutions for self-dual Yang-Mills equations, Chaos Solitons Fractals, 10 (1999), 1309-1320.
doi: 10.1016/S0960-0779(98)00155-6. |
[11] |
A. H. Khater, D. K. Callebaut and R. S. Ibrahim, Bäcklund transformations and Painlevé analysis: Exact solutions for the unstable nonlinear Schrödinger equation modelling electron-beam plasma, Phys. Plasmas, 5 (1998), 395-400.
doi: 10.1063/1.872723. |
[12] |
A. H. Khater, D. K. Callebaut and S. M. Sayed, Conservation laws for some nonlinear evolution equations which describe pseudo-spherical surfaces, J. Geom. Phys., 51 (2004), 332-352.
doi: 10.1016/j.geomphys.2003.11.009. |
[13] |
A. H. Khater, D. K. Callebaut and S. M. Sayed, Bäcklund transformations for some nonlinear evolution equations which describe pseudospherical surfaces,, submitted., ().
|
[14] |
A. H. Khater, D. K. Callebaut and S. M. Sayed, Exact solutions for some nonlinear evolution equations which describe pseudo-spherical surfaces, J. Comp. and Appl. Math., 189 (2006), 387-411.
doi: 10.1016/j.cam.2005.10.007. |
[15] |
A. H. Khater, M. A. Helal and O. H. El-Kalaawy, Two new classes of exact solutions for the KdV equation via Bäcklund transformations, Choas Solitons Fractals, 8 (1997), 1901-1909.
doi: 10.1016/S0960-0779(97)00090-8. |
[16] |
A. H. Khater, A. M. Shehata, D. K. Callebaut and S. M. Sayed, Self-dual solutions for $SU(2)$ and $SU(3)$ gauge fields one Euclidean space, J. Theoret. Phys., 43 (2004), 151-159.
doi: 10.1023/B:IJTP.0000028857.57274.cd. |
[17] |
K. Konno and M. Wadati, Simple derivation of Bäcklund transformation from Riccati form of inverse method, Progr. Theoret. Phys., 53 (1975), 1652-1656.
doi: 10.1143/PTP.53.1652. |
[18] |
M. G. Lamb, Bäcklund transformations for certain nonlinear evolution equations, J. Math. Phys., 15 (1974), 2157-2165.
doi: 10.1063/1.1666595. |
[19] |
P. G. LeFloch and R. Natalini, Conservation laws with vanishing nonlinear diffusion and dispersion, Nonlinear Anal., 36 (1999), 213-230.
doi: 10.1016/S0362-546X(98)00012-1. |
[20] |
Y. G. Lu, Convergence of solutions to nonlinear dispersive equations without convexity conditions, Appl. Anal., 31 (1989), 239-246.
doi: 10.1080/00036818908839828. |
[21] |
F. Murat, L'injection du cône positif de $H^{-1}$ dans $W^{-1,q}$ est compacte pour tout $q<2$, J. Math. Pures Appl. (9), 60 (1981), 309-322. |
[22] |
M. E. Schonbek, Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations, 7 (1982), 959-1000.
doi: 10.1080/03605308208820242. |
[23] |
M. Rabelo, On equations which describe pseudospherical surfaces, Stud. Appl. Math., 81 (1989), 221-248.
doi: 10.1002/sapm1989813221. |
[24] |
C. Rogers and W. K. Schief, Bäcklund and Darboux Transformations, in Geometry and Modern Applications in Soliton Theory, Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511606359. |
[25] |
C. Rogers and W. K. Schief, Bäcklund Transformations and Their Applications, Academic Press, New York, 1982. |
[26] |
S. M. Sayed, A. M. Elkholy and G. M. Gharib, Exact solutions and conservation laws for Ibragimov-Shabat equation which describe pseudo-spherical surface, Comput. & Appl. Math., 27 (2008), 305-318.
doi: 10.1590/S0101-82052008000300005. |
[27] |
V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP, 34 (1972), 62-69. |
show all references
References:
[1] |
M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math., 53 (1974), 249-315.
doi: 10.1002/sapm1974534249. |
[2] |
R. Beals, M. Rabelo and K. Tenenblat, Bäcklund transformations and inverse scattering solutions for some pseudospherical surface equations, Stud. Appl. Math., 81 (1989), 125-151.
doi: 10.1002/sapm1989812125. |
[3] |
G. M. Coclite and L. di Ruvo, Well-posedness results for the short pulse equation, Z. Angew. Math. Phys., 66 (2015), 1529-1557.
doi: 10.1007/s00033-014-0478-6. |
[4] |
G. M. Coclite and L. di Ruvo, On the Wellposedness of the exp-Rabelo equation,, Ann. Mat. Pura Appl., ().
doi: 10.1007/s10231-015-0497-8. |
[5] |
G. M. Coclite, L. di Ruvo, J. Ernest and S. Mishra, Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes, Netw. Heterog. Media., 8 (2013), 969-984.
doi: 10.3934/nhm.2013.8.969. |
[6] |
G. M. Coclite and K. H. Karlsen, A singular limit problem for conservation laws related to the Camassa-Holm shallow water equation, Comm. Partial Differential Equations, 31 (2006), 1253-1272.
doi: 10.1080/03605300600781600. |
[7] |
R. K. Dodd and R. K. Bullough, Bäcklund transformations for the A.K.N.S. inverse method, Phys. Lett. A, 62 (1977), 70-74.
doi: 10.1016/0375-9601(77)90952-5. |
[8] |
L. P. Eisenhart, A Treatise on the Differential Geometry of Curves and Surfaces, Dover, New York, 1960. |
[9] |
E. Goursat, Le Problème de Bäcklund, Mémorial des Sciences Mathématiques, Fasc. VI, Gauthier-Villars, Paris, 1925. |
[10] |
A. H. Khater, D. K. Callebaut, A. A. Abdalla and S. M. Sayed, Exact solutions for self-dual Yang-Mills equations, Chaos Solitons Fractals, 10 (1999), 1309-1320.
doi: 10.1016/S0960-0779(98)00155-6. |
[11] |
A. H. Khater, D. K. Callebaut and R. S. Ibrahim, Bäcklund transformations and Painlevé analysis: Exact solutions for the unstable nonlinear Schrödinger equation modelling electron-beam plasma, Phys. Plasmas, 5 (1998), 395-400.
doi: 10.1063/1.872723. |
[12] |
A. H. Khater, D. K. Callebaut and S. M. Sayed, Conservation laws for some nonlinear evolution equations which describe pseudo-spherical surfaces, J. Geom. Phys., 51 (2004), 332-352.
doi: 10.1016/j.geomphys.2003.11.009. |
[13] |
A. H. Khater, D. K. Callebaut and S. M. Sayed, Bäcklund transformations for some nonlinear evolution equations which describe pseudospherical surfaces,, submitted., ().
|
[14] |
A. H. Khater, D. K. Callebaut and S. M. Sayed, Exact solutions for some nonlinear evolution equations which describe pseudo-spherical surfaces, J. Comp. and Appl. Math., 189 (2006), 387-411.
doi: 10.1016/j.cam.2005.10.007. |
[15] |
A. H. Khater, M. A. Helal and O. H. El-Kalaawy, Two new classes of exact solutions for the KdV equation via Bäcklund transformations, Choas Solitons Fractals, 8 (1997), 1901-1909.
doi: 10.1016/S0960-0779(97)00090-8. |
[16] |
A. H. Khater, A. M. Shehata, D. K. Callebaut and S. M. Sayed, Self-dual solutions for $SU(2)$ and $SU(3)$ gauge fields one Euclidean space, J. Theoret. Phys., 43 (2004), 151-159.
doi: 10.1023/B:IJTP.0000028857.57274.cd. |
[17] |
K. Konno and M. Wadati, Simple derivation of Bäcklund transformation from Riccati form of inverse method, Progr. Theoret. Phys., 53 (1975), 1652-1656.
doi: 10.1143/PTP.53.1652. |
[18] |
M. G. Lamb, Bäcklund transformations for certain nonlinear evolution equations, J. Math. Phys., 15 (1974), 2157-2165.
doi: 10.1063/1.1666595. |
[19] |
P. G. LeFloch and R. Natalini, Conservation laws with vanishing nonlinear diffusion and dispersion, Nonlinear Anal., 36 (1999), 213-230.
doi: 10.1016/S0362-546X(98)00012-1. |
[20] |
Y. G. Lu, Convergence of solutions to nonlinear dispersive equations without convexity conditions, Appl. Anal., 31 (1989), 239-246.
doi: 10.1080/00036818908839828. |
[21] |
F. Murat, L'injection du cône positif de $H^{-1}$ dans $W^{-1,q}$ est compacte pour tout $q<2$, J. Math. Pures Appl. (9), 60 (1981), 309-322. |
[22] |
M. E. Schonbek, Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations, 7 (1982), 959-1000.
doi: 10.1080/03605308208820242. |
[23] |
M. Rabelo, On equations which describe pseudospherical surfaces, Stud. Appl. Math., 81 (1989), 221-248.
doi: 10.1002/sapm1989813221. |
[24] |
C. Rogers and W. K. Schief, Bäcklund and Darboux Transformations, in Geometry and Modern Applications in Soliton Theory, Cambridge University Press, Cambridge, 2002.
doi: 10.1017/CBO9780511606359. |
[25] |
C. Rogers and W. K. Schief, Bäcklund Transformations and Their Applications, Academic Press, New York, 1982. |
[26] |
S. M. Sayed, A. M. Elkholy and G. M. Gharib, Exact solutions and conservation laws for Ibragimov-Shabat equation which describe pseudo-spherical surface, Comput. & Appl. Math., 27 (2008), 305-318.
doi: 10.1590/S0101-82052008000300005. |
[27] |
V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Sov. Phys. JETP, 34 (1972), 62-69. |
[1] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[2] |
Dmytro Marushkevych, Alexandre Popier. Limit behaviour of the minimal solution of a BSDE with singular terminal condition in the non Markovian setting. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 1-. doi: 10.1186/s41546-020-0043-5 |
[3] |
Erisa Hasani, Kanishka Perera. On the compactness threshold in the critical Kirchhoff equation. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 1-19. doi: 10.3934/dcds.2021106 |
[4] |
John Guckenheimer, Christian Kuehn. Homoclinic orbits of the FitzHugh-Nagumo equation: The singular-limit. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 851-872. doi: 10.3934/dcdss.2009.2.851 |
[5] |
Aníbal Rodríguez-Bernal, Enrique Zuazua. Parabolic singular limit of a wave equation with localized boundary damping. Discrete and Continuous Dynamical Systems, 1995, 1 (3) : 303-346. doi: 10.3934/dcds.1995.1.303 |
[6] |
Mohammad Hassan Farshbaf-Shaker, Takeshi Fukao, Noriaki Yamazaki. Singular limit of Allen--Cahn equation with constraint and its Lagrange multiplier. Conference Publications, 2015, 2015 (special) : 418-427. doi: 10.3934/proc.2015.0418 |
[7] |
Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami, Johannes Lankeit. The large diffusion limit for the heat equation in the exterior of the unit ball with a dynamical boundary condition. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6529-6546. doi: 10.3934/dcds.2020289 |
[8] |
John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 |
[9] |
Giuseppe Maria Coclite, Lorenzo di Ruvo. A singular limit problem for conservation laws related to the Kawahara-Korteweg-de Vries equation. Networks and Heterogeneous Media, 2016, 11 (2) : 281-300. doi: 10.3934/nhm.2016.11.281 |
[10] |
Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations and Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517 |
[11] |
Roberto Livrea, Salvatore A. Marano. A min-max principle for non-differentiable functions with a weak compactness condition. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1019-1029. doi: 10.3934/cpaa.2009.8.1019 |
[12] |
Zvi Artstein. Invariance principle in the singular perturbations limit. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3653-3666. doi: 10.3934/dcdsb.2018309 |
[13] |
José Antonio Carrillo, Yingping Peng, Aneta Wróblewska-Kamińska. Relative entropy method for the relaxation limit of hydrodynamic models. Networks and Heterogeneous Media, 2020, 15 (3) : 369-387. doi: 10.3934/nhm.2020023 |
[14] |
Jacek Banasiak, Wilson Lamb. The discrete fragmentation equation: Semigroups, compactness and asynchronous exponential growth. Kinetic and Related Models, 2012, 5 (2) : 223-236. doi: 10.3934/krm.2012.5.223 |
[15] |
Emmanuel Hebey and Frederic Robert. Compactness and global estimates for the geometric Paneitz equation in high dimensions. Electronic Research Announcements, 2004, 10: 135-141. |
[16] |
Evgeny Yu. Panov. On a condition of strong precompactness and the decay of periodic entropy solutions to scalar conservation laws. Networks and Heterogeneous Media, 2016, 11 (2) : 349-367. doi: 10.3934/nhm.2016.11.349 |
[17] |
Marie Henry. Singular limit of an activator-inhibitor type model. Networks and Heterogeneous Media, 2012, 7 (4) : 781-803. doi: 10.3934/nhm.2012.7.781 |
[18] |
Elisabeth Logak, Chao Wang. The singular limit of a haptotaxis model with bistable growth. Communications on Pure and Applied Analysis, 2012, 11 (1) : 209-228. doi: 10.3934/cpaa.2012.11.209 |
[19] |
Frank Jochmann. A singular limit in a nonlinear problem arising in electromagnetism. Communications on Pure and Applied Analysis, 2011, 10 (2) : 541-559. doi: 10.3934/cpaa.2011.10.541 |
[20] |
Monica Conti, Vittorino Pata, M. Squassina. Singular limit of dissipative hyperbolic equations with memory. Conference Publications, 2005, 2005 (Special) : 200-208. doi: 10.3934/proc.2005.2005.200 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]