Citation: |
[1] |
N. L. Abasheeva, Determination of a right-hand side term in an operator-differential equation of mixed type, J. Inverse Ill-Posed Probl., 10 (2002), 547-560.doi: 10.1515/jiip.2002.10.6.547. |
[2] |
M. Al Horani and A. Favini, An identification problem for first-order degenerate differential equations, J. Optim Theory Appl., 130 (2006), 41-60.doi: 10.1007/s10957-006-9083-y. |
[3] |
M. Al Horani and A. Favini, Degenerate first-order inverse problems in Banach spaces, Nonlinear Anal., 75 (2012), 68-77.doi: 10.1016/j.na.2011.08.001. |
[4] |
G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, New York, Basel, 2003.doi: 10.1201/9780203911433. |
[5] |
A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker, New York, 1999. |
[6] |
V. E. Fedorov, Linear equations of the Sobolev type with relatively $p$-radial operators, Dokl. Akad. Nauk, 351 (1996), 316-318. |
[7] |
V. E. Fedorov, Degenerate strongly continuous semigroups of operators, St. Petersburgh. Math. J., 12 (2001), 471-489. |
[8] |
V. E. Fedorov, A generalization of the Hille-Yosida theorem to the case of degenerate semigroups in locally convex spaces, Siberian Math. J., 46 (2005), 333-350.doi: 10.1007/s11202-005-0035-9. |
[9] |
V. E. Fedorov, Svoistva psevdoresolvent i usloviya sushchestvovaniya vyrozhdennoi polugruppy operatorov, (Russian) [Pseudoresolvent properties and a degenerate operator semigroup existence conditions], Vestnik Chelyab. gos. universiteta. Matematika. Mekhanika. Informatika, 11 (2009), 12-19, 153. |
[10] |
N. D. Ivanova, Inverse problem for a linearized quasi-stationary phase field model with degeneracy, Vestnik Yuzhno-Ural'skogo gos. universiteta. Mat. modelirovanie i programmirovanie, 6 (2013), 128-133. |
[11] |
N. D. Ivanova, V. E. Fedorov and K. M. Komarova, Nelineinaya obratnaya zadacha dlya sistemy Oskolkova, linearizovannoy v okrestnosti statsionarnogo resheniya, (Russian) [Nonlinear inverse problem for the Oskolkov system, linearized in a stationary solution neighbourhood], Vestnik Chelyab. gos. universiteta. Matematika. Mechanika. Informatika, 13 (2012), 50-71. |
[12] |
A. I. Kozhanov, Lineinye obratnye zadachi dlya odnogo klassa vyrozhdayushchikhsya uravneniy sobolevskogo tipa (Russian) [Linear inverse problem for a class of degenerate Sobolev type equations], Vestnik Yuzhno-Ural'skogo gos. universiteta. Mat. modelirovanie i programmirovanie, 5 (2012), 33-42. |
[13] |
O. A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, New York-London-Paris: Gordon and Breach, Science Publishers, 1969. |
[14] |
A. P. Oskolkov, Nachal'no-kraevye zadachi dlya uravneniy dvizheniya zhidkostei Kel'vina-Foigta i zhidkostei Oldroita, (Russian) [Initial-boundary value problems for equations of Kelvin-Voight and Oldroyd fluids motion], Trudy Mat. instituta AN SSSR, 179 (1988), 126-164. |
[15] |
M. V. Plekhanova and V. E. Fedorov, Optimal'noe Upravlenie Vyrozhdennymi Raspredelennymi Sistemami, (Russian) [Optimal Control for Degenerate Distributed Systems], Publishing Center of South Ural State University, Chelyabinsk, 2013. |
[16] |
A. I. Prilepko, D. G. Orlovskiy and I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Marcel Dekker, New York, 2000. |
[17] |
A. G. Sveshnikov, A. B. Al'shin, M. O. Korpusov and Yu. D. Pletner, Lineinye i Nelineinye Uravneniya Sobolevskogo Tipa, (Russian) [Linear and Nonlinear Equations of the Sobolev Type], Fizmatlit, Moscow, 2007. |
[18] |
A. V. Urazaeva and V. E. Fedorov, An inverse problem for linear Sobolev type equations, J. Inverse Ill-Posed Probl., 12 (2004), 387-395.doi: 10.1515/1569394042248210. |
[19] |
A. V. Urazaeva and V. E. Fedorov, Prediction-control problem for some systems of equations of fluid dynamics, Differ. Equ., 44 (2008), 1147-1156.doi: 10.1134/S0012266108080120. |
[20] |
A. V. Urazaeva and V. E. Fedorov, On the well-posedness of the prediction-control problem for some systems of equations, Math. Notes, 85 (2009), 426-436.doi: 10.1134/S0001434609030134. |
[21] |
A. V. Urazaeva and V. E. Fedorov, Lineinaya evolutsionnaya obratnaya zadacha dlya uravnenii sobolevskogo tipa, (Russian) [Linear evolutionary inverse problem for Sobolev type equations], in Neklassicheskie uravnenia matematicheskoi fiziki (ed. A.I. Kozhanov), Sobolev Institute of Mathematics of the SB RAS, (2010), 293-310. |