\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Generalized Wentzell boundary conditions for second order operators with interior degeneracy

Abstract / Introduction Related Papers Cited by
  • We consider operators in divergence form, $A_1u=(au')'$, and in nondivergence form, $A_2u=au''$, provided that the coefficient $a$ vanishes in an interior point of the space domain. Characterizing the domain of the operators, we prove that, under suitable assumptions, the operators $A_1$ and $A_2$, equipped with general Wentzell boundary conditions, are nonpositive and selfadjoint on spaces of $L^2$ type.
    Mathematics Subject Classification: Primary: 47D06; Secondary: 35K65, 47B25, 47N20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, 96, Birkhäuser Verlag, Basel, 2001.doi: 10.1007/978-3-0348-5075-9.

    [2]

    J. M. Ball, Strongly continuous semigroups, weak solutions and the variation of constant formula, Proc. Amer. Math. Soc., 63 (1977), 370-373.

    [3]

    G. I. Boutaayamou, G. Fragnelli and L. Maniar, Lipschitz stability for linear parabolic systems with interior degeneracy, Electron. J. Differential Equations, 2014 (2014), 1-26.

    [4]

    G. I. Boutaayamou, G. Fragnelli and L. Maniar, Carleman estimates for parabolic equations with interior degeneracy and Neumann boundary conditions, J. Anal. Math., in press. arXiv:1509.00863.

    [5]

    G. I. Boutaayamou, G. Fragnelli and L. Maniar, Inverse problems for parabolic equations with interior degeneracy and Neumann boundary conditions, J. Inverse Ill-Posed Probl, (2015).doi: 10.1515/jiip-2014-0032.

    [6]

    T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, 13 (1998), Oxford University Press.

    [7]

    G. M. Coclite, A. Favini, C. G. Gal, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, The role of Wentzell boundary conditions in linear and nonlinear analysis, in Advances in nonlinear analysis: Theory, methods and applications, Math. Probl. Eng. Aerosp. Sci. 3, Camb. Sci. Publ., Cambridge, (2009), 277-289.

    [8]

    A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary conditions, J. Evol. Equ., 2 (2002), 1-19.doi: 10.1007/s00028-002-8077-y.

    [9]

    G. Fragnelli, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Generators with interior degeneracy on spaces of $L^2$ type, Electron. J. Differential Equations, 2012 (2012), 1-30.

    [10]

    G. Fragnelli, G. Marinoschi, R. M. Mininni and S. Romanelli, A control approach for an identification problem associated to a strongly degenerate parabolic system with interior degeneracy, in: New Prospects in direct, inverse and control problems for evolution equations (eds. A. Favini, G. Fragnelli and R.M. Mininni), Springer INdAM Ser. 10, Springer, Cham, (2014), 121-139.doi: 10.1007/978-3-319-11406-4_7.

    [11]

    G. Fragnelli, G. Marinoschi, R. M. Mininni and S. Romanelli, Identification of a diffusion coefficient in strongly degenerate parabolic equations with interior degeneracy, J. Evol. Equ., 15 (2015), 27-51.doi: 10.1007/s00028-014-0247-1.

    [12]

    G. Fragnelli and D. Mugnai, Carleman estimates and observability inequalities for parabolic equations with interior degeneracy, Adv. Nonlinear Anal., 2 (2013), 339-378.doi: 10.1515/anona-2013-0015.

    [13]

    G. Fragnelli and D. Mugnai, Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations, Mem. Amer. Math. Soc., in press, 242 (2016), arXiv:1508.04014.doi: 10.1090/memo/1146.

    [14]

    G. R. Goldstein, Derivation and physical interpretation of general Wentzell boundary conditions, Adv. Differential Equations, 11 (2006), 457-480.

    [15]

    J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Univ. Press, Oxford, New York, 1985.

    [16]

    A. Stahel, Degenerate semilinear parabolic equations, Differential Integral Equations, 5 (1992), 683-691.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(172) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return