• Previous Article
    Classical solutions to quasilinear parabolic problems with dynamic boundary conditions
  • DCDS-S Home
  • This Issue
  • Next Article
    Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel
June  2016, 9(3): 697-715. doi: 10.3934/dcdss.2016023

Generalized Wentzell boundary conditions for second order operators with interior degeneracy

1. 

Department of Mathematics, University of Bari Aldo Moro, Via E.Orabona 4, 70125 Bari, Italy

2. 

The University of Memphis, Mathematical Sciences, 373 Dunn Hall, Memphis, TN 38152-3240

3. 

Department of Mathematical Sciences, University of Memphis, 373 Dunn Hall, Memphis, TN 38152-3240, United States

4. 

Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro, via E. Orabona 4, 70125 Bari

Received  April 2015 Revised  September 2015 Published  April 2016

We consider operators in divergence form, $A_1u=(au')'$, and in nondivergence form, $A_2u=au''$, provided that the coefficient $a$ vanishes in an interior point of the space domain. Characterizing the domain of the operators, we prove that, under suitable assumptions, the operators $A_1$ and $A_2$, equipped with general Wentzell boundary conditions, are nonpositive and selfadjoint on spaces of $L^2$ type.
Citation: Genni Fragnelli, Gisèle Ruiz Goldstein, Jerome Goldstein, Rosa Maria Mininni, Silvia Romanelli. Generalized Wentzell boundary conditions for second order operators with interior degeneracy. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 697-715. doi: 10.3934/dcdss.2016023
References:
[1]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems,, Monographs in Mathematics, 96 (2001).  doi: 10.1007/978-3-0348-5075-9.  Google Scholar

[2]

J. M. Ball, Strongly continuous semigroups, weak solutions and the variation of constant formula,, Proc. Amer. Math. Soc., 63 (1977), 370.   Google Scholar

[3]

G. I. Boutaayamou, G. Fragnelli and L. Maniar, Lipschitz stability for linear parabolic systems with interior degeneracy,, Electron. J. Differential Equations, 2014 (2014), 1.   Google Scholar

[4]

G. I. Boutaayamou, G. Fragnelli and L. Maniar, Carleman estimates for parabolic equations with interior degeneracy and Neumann boundary conditions,, J. Anal. Math., ().   Google Scholar

[5]

G. I. Boutaayamou, G. Fragnelli and L. Maniar, Inverse problems for parabolic equations with interior degeneracy and Neumann boundary conditions,, J. Inverse Ill-Posed Probl, (2015).  doi: 10.1515/jiip-2014-0032.  Google Scholar

[6]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations,, Oxford Lecture Series in Mathematics and its Applications, 13 (1998).   Google Scholar

[7]

G. M. Coclite, A. Favini, C. G. Gal, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, The role of Wentzell boundary conditions in linear and nonlinear analysis,, in Advances in nonlinear analysis: Theory, 3 (2009), 277.   Google Scholar

[8]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary conditions,, J. Evol. Equ., 2 (2002), 1.  doi: 10.1007/s00028-002-8077-y.  Google Scholar

[9]

G. Fragnelli, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Generators with interior degeneracy on spaces of $L^2$ type,, Electron. J. Differential Equations, 2012 (2012), 1.   Google Scholar

[10]

G. Fragnelli, G. Marinoschi, R. M. Mininni and S. Romanelli, A control approach for an identification problem associated to a strongly degenerate parabolic system with interior degeneracy,, in: New Prospects in direct, 10 (2014), 121.  doi: 10.1007/978-3-319-11406-4_7.  Google Scholar

[11]

G. Fragnelli, G. Marinoschi, R. M. Mininni and S. Romanelli, Identification of a diffusion coefficient in strongly degenerate parabolic equations with interior degeneracy,, J. Evol. Equ., 15 (2015), 27.  doi: 10.1007/s00028-014-0247-1.  Google Scholar

[12]

G. Fragnelli and D. Mugnai, Carleman estimates and observability inequalities for parabolic equations with interior degeneracy,, Adv. Nonlinear Anal., 2 (2013), 339.  doi: 10.1515/anona-2013-0015.  Google Scholar

[13]

G. Fragnelli and D. Mugnai, Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations,, Mem. Amer. Math. Soc., 242 (2016).  doi: 10.1090/memo/1146.  Google Scholar

[14]

G. R. Goldstein, Derivation and physical interpretation of general Wentzell boundary conditions,, Adv. Differential Equations, 11 (2006), 457.   Google Scholar

[15]

J. A. Goldstein, Semigroups of Linear Operators and Applications,, Oxford Univ. Press, (1985).   Google Scholar

[16]

A. Stahel, Degenerate semilinear parabolic equations,, Differential Integral Equations, 5 (1992), 683.   Google Scholar

show all references

References:
[1]

W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems,, Monographs in Mathematics, 96 (2001).  doi: 10.1007/978-3-0348-5075-9.  Google Scholar

[2]

J. M. Ball, Strongly continuous semigroups, weak solutions and the variation of constant formula,, Proc. Amer. Math. Soc., 63 (1977), 370.   Google Scholar

[3]

G. I. Boutaayamou, G. Fragnelli and L. Maniar, Lipschitz stability for linear parabolic systems with interior degeneracy,, Electron. J. Differential Equations, 2014 (2014), 1.   Google Scholar

[4]

G. I. Boutaayamou, G. Fragnelli and L. Maniar, Carleman estimates for parabolic equations with interior degeneracy and Neumann boundary conditions,, J. Anal. Math., ().   Google Scholar

[5]

G. I. Boutaayamou, G. Fragnelli and L. Maniar, Inverse problems for parabolic equations with interior degeneracy and Neumann boundary conditions,, J. Inverse Ill-Posed Probl, (2015).  doi: 10.1515/jiip-2014-0032.  Google Scholar

[6]

T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations,, Oxford Lecture Series in Mathematics and its Applications, 13 (1998).   Google Scholar

[7]

G. M. Coclite, A. Favini, C. G. Gal, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, The role of Wentzell boundary conditions in linear and nonlinear analysis,, in Advances in nonlinear analysis: Theory, 3 (2009), 277.   Google Scholar

[8]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary conditions,, J. Evol. Equ., 2 (2002), 1.  doi: 10.1007/s00028-002-8077-y.  Google Scholar

[9]

G. Fragnelli, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Generators with interior degeneracy on spaces of $L^2$ type,, Electron. J. Differential Equations, 2012 (2012), 1.   Google Scholar

[10]

G. Fragnelli, G. Marinoschi, R. M. Mininni and S. Romanelli, A control approach for an identification problem associated to a strongly degenerate parabolic system with interior degeneracy,, in: New Prospects in direct, 10 (2014), 121.  doi: 10.1007/978-3-319-11406-4_7.  Google Scholar

[11]

G. Fragnelli, G. Marinoschi, R. M. Mininni and S. Romanelli, Identification of a diffusion coefficient in strongly degenerate parabolic equations with interior degeneracy,, J. Evol. Equ., 15 (2015), 27.  doi: 10.1007/s00028-014-0247-1.  Google Scholar

[12]

G. Fragnelli and D. Mugnai, Carleman estimates and observability inequalities for parabolic equations with interior degeneracy,, Adv. Nonlinear Anal., 2 (2013), 339.  doi: 10.1515/anona-2013-0015.  Google Scholar

[13]

G. Fragnelli and D. Mugnai, Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations,, Mem. Amer. Math. Soc., 242 (2016).  doi: 10.1090/memo/1146.  Google Scholar

[14]

G. R. Goldstein, Derivation and physical interpretation of general Wentzell boundary conditions,, Adv. Differential Equations, 11 (2006), 457.   Google Scholar

[15]

J. A. Goldstein, Semigroups of Linear Operators and Applications,, Oxford Univ. Press, (1985).   Google Scholar

[16]

A. Stahel, Degenerate semilinear parabolic equations,, Differential Integral Equations, 5 (1992), 683.   Google Scholar

[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[2]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[3]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[4]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[5]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[6]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[7]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[8]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[9]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[10]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[11]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[12]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[13]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[14]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[15]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[16]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[17]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[18]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[19]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[20]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (1)

[Back to Top]