Citation: |
[1] |
W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Monographs in Mathematics, 96, Birkhäuser Verlag, Basel, 2001.doi: 10.1007/978-3-0348-5075-9. |
[2] |
J. M. Ball, Strongly continuous semigroups, weak solutions and the variation of constant formula, Proc. Amer. Math. Soc., 63 (1977), 370-373. |
[3] |
G. I. Boutaayamou, G. Fragnelli and L. Maniar, Lipschitz stability for linear parabolic systems with interior degeneracy, Electron. J. Differential Equations, 2014 (2014), 1-26. |
[4] |
G. I. Boutaayamou, G. Fragnelli and L. Maniar, Carleman estimates for parabolic equations with interior degeneracy and Neumann boundary conditions, J. Anal. Math., in press. arXiv:1509.00863. |
[5] |
G. I. Boutaayamou, G. Fragnelli and L. Maniar, Inverse problems for parabolic equations with interior degeneracy and Neumann boundary conditions, J. Inverse Ill-Posed Probl, (2015).doi: 10.1515/jiip-2014-0032. |
[6] |
T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford Lecture Series in Mathematics and its Applications, 13 (1998), Oxford University Press. |
[7] |
G. M. Coclite, A. Favini, C. G. Gal, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, The role of Wentzell boundary conditions in linear and nonlinear analysis, in Advances in nonlinear analysis: Theory, methods and applications, Math. Probl. Eng. Aerosp. Sci. 3, Camb. Sci. Publ., Cambridge, (2009), 277-289. |
[8] |
A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with generalized Wentzell boundary conditions, J. Evol. Equ., 2 (2002), 1-19.doi: 10.1007/s00028-002-8077-y. |
[9] |
G. Fragnelli, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Generators with interior degeneracy on spaces of $L^2$ type, Electron. J. Differential Equations, 2012 (2012), 1-30. |
[10] |
G. Fragnelli, G. Marinoschi, R. M. Mininni and S. Romanelli, A control approach for an identification problem associated to a strongly degenerate parabolic system with interior degeneracy, in: New Prospects in direct, inverse and control problems for evolution equations (eds. A. Favini, G. Fragnelli and R.M. Mininni), Springer INdAM Ser. 10, Springer, Cham, (2014), 121-139.doi: 10.1007/978-3-319-11406-4_7. |
[11] |
G. Fragnelli, G. Marinoschi, R. M. Mininni and S. Romanelli, Identification of a diffusion coefficient in strongly degenerate parabolic equations with interior degeneracy, J. Evol. Equ., 15 (2015), 27-51.doi: 10.1007/s00028-014-0247-1. |
[12] |
G. Fragnelli and D. Mugnai, Carleman estimates and observability inequalities for parabolic equations with interior degeneracy, Adv. Nonlinear Anal., 2 (2013), 339-378.doi: 10.1515/anona-2013-0015. |
[13] |
G. Fragnelli and D. Mugnai, Carleman estimates, observability inequalities and null controllability for interior degenerate non smooth parabolic equations, Mem. Amer. Math. Soc., in press, 242 (2016), arXiv:1508.04014.doi: 10.1090/memo/1146. |
[14] |
G. R. Goldstein, Derivation and physical interpretation of general Wentzell boundary conditions, Adv. Differential Equations, 11 (2006), 457-480. |
[15] |
J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Univ. Press, Oxford, New York, 1985. |
[16] |
A. Stahel, Degenerate semilinear parabolic equations, Differential Integral Equations, 5 (1992), 683-691. |