June  2016, 9(3): 717-736. doi: 10.3934/dcdss.2016024

Classical solutions to quasilinear parabolic problems with dynamic boundary conditions

1. 

Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy

Received  November 2014 Published  April 2016

We study linear nonautonomous parabolic systems with dynamic boundary conditions. Next, we apply these results to show a theorem of local existence and uniqueness of a classical solution to a second order quasilinear system with nonlinear dynamic boundary conditions.
Citation: Davide Guidetti. Classical solutions to quasilinear parabolic problems with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 717-736. doi: 10.3934/dcdss.2016024
References:
[1]

G. Coclite, G. Ruiz Goldstein and J. A. Goldstein, Stability of parabolic problems with nonlinear Wentzell boundary conditions,, J. Differential Equations, 246 (2009), 2434. doi: 10.1016/j.jde.2008.10.004. Google Scholar

[2]

G. Coclite, G. Ruiz Goldstein and J. A. Goldstein, Well-posedness of nonlinear parabolic problems with nonlinear Wentzell boundary conditions,, Adv. Differential Equations, 16 (2011), 895. Google Scholar

[3]

J. Escher, Quasilinear parabolic systems with dynamical boundary conditions,, Comm. Partial Differential Equations, 18 (1993), 1309. doi: 10.1080/03605309308820976. Google Scholar

[4]

A. Favini, G. Ruiz Goldstein, J. Goldstein and S. Romanelli, Nonlinear boundary conditions for nonlinear second order differential operators on $C[0, 1]$,, Arch. Math. (Basel), 76 (2001), 391. doi: 10.1007/PL00000449. Google Scholar

[5]

C. Gal and M. Warma, Well posedness and the global attractor of some quasi-linear parabolic equations with nonlinear dynamic boundary conditions,, Differential Integral Equations, 23 (2010), 327. Google Scholar

[6]

D. Guidetti, Linear parabolic problems with dynamic boundary conditions in spaces of H\"older continuous functions,, Ann. Mat. Pura Appl. (4), 195 (2016), 167. doi: 10.1007/s10231-014-0457-8. Google Scholar

[7]

T. Hintermann, Evolution equations with dynamic boundary conditions,, Proc. Roy. Soc. Edinburgh Sect. A, 113 (1989), 43. doi: 10.1017/S0308210500023945. Google Scholar

[8]

J. Kakŭr, Nonlinear parabolic equations with the mixed nonlinear and nonstationary boundary conditions,, Math. Slovaca, 30 (1980), 213. Google Scholar

[9]

M. Warma, The Robin and Wentzell-Robin Laplacians on Lipschitz domains,, Semigroup Forum, 73 (2006), 10. doi: 10.1007/s00233-006-0617-2. Google Scholar

[10]

M. Warma, Quasilinear parabolic equations with nonlinear Wentzell-Robin type boundary conditions,, J. Math. Anal. Appl., 336 (2007), 1132. doi: 10.1016/j.jmaa.2007.03.050. Google Scholar

show all references

References:
[1]

G. Coclite, G. Ruiz Goldstein and J. A. Goldstein, Stability of parabolic problems with nonlinear Wentzell boundary conditions,, J. Differential Equations, 246 (2009), 2434. doi: 10.1016/j.jde.2008.10.004. Google Scholar

[2]

G. Coclite, G. Ruiz Goldstein and J. A. Goldstein, Well-posedness of nonlinear parabolic problems with nonlinear Wentzell boundary conditions,, Adv. Differential Equations, 16 (2011), 895. Google Scholar

[3]

J. Escher, Quasilinear parabolic systems with dynamical boundary conditions,, Comm. Partial Differential Equations, 18 (1993), 1309. doi: 10.1080/03605309308820976. Google Scholar

[4]

A. Favini, G. Ruiz Goldstein, J. Goldstein and S. Romanelli, Nonlinear boundary conditions for nonlinear second order differential operators on $C[0, 1]$,, Arch. Math. (Basel), 76 (2001), 391. doi: 10.1007/PL00000449. Google Scholar

[5]

C. Gal and M. Warma, Well posedness and the global attractor of some quasi-linear parabolic equations with nonlinear dynamic boundary conditions,, Differential Integral Equations, 23 (2010), 327. Google Scholar

[6]

D. Guidetti, Linear parabolic problems with dynamic boundary conditions in spaces of H\"older continuous functions,, Ann. Mat. Pura Appl. (4), 195 (2016), 167. doi: 10.1007/s10231-014-0457-8. Google Scholar

[7]

T. Hintermann, Evolution equations with dynamic boundary conditions,, Proc. Roy. Soc. Edinburgh Sect. A, 113 (1989), 43. doi: 10.1017/S0308210500023945. Google Scholar

[8]

J. Kakŭr, Nonlinear parabolic equations with the mixed nonlinear and nonstationary boundary conditions,, Math. Slovaca, 30 (1980), 213. Google Scholar

[9]

M. Warma, The Robin and Wentzell-Robin Laplacians on Lipschitz domains,, Semigroup Forum, 73 (2006), 10. doi: 10.1007/s00233-006-0617-2. Google Scholar

[10]

M. Warma, Quasilinear parabolic equations with nonlinear Wentzell-Robin type boundary conditions,, J. Math. Anal. Appl., 336 (2007), 1132. doi: 10.1016/j.jmaa.2007.03.050. Google Scholar

[1]

Alexandre Nolasco de Carvalho, Marcos Roberto Teixeira Primo. Spatial homogeneity in parabolic problems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2004, 3 (4) : 637-651. doi: 10.3934/cpaa.2004.3.637

[2]

Junichi Harada, Mitsuharu Ôtani. $H^2$-solutions for some elliptic equations with nonlinear boundary conditions. Conference Publications, 2009, 2009 (Special) : 333-339. doi: 10.3934/proc.2009.2009.333

[3]

Sergey P. Degtyarev. On Fourier multipliers in function spaces with partial Hölder condition and their application to the linearized Cahn-Hilliard equation with dynamic boundary conditions. Evolution Equations & Control Theory, 2015, 4 (4) : 391-429. doi: 10.3934/eect.2015.4.391

[4]

Lahcen Maniar, Martin Meyries, Roland Schnaubelt. Null controllability for parabolic equations with dynamic boundary conditions. Evolution Equations & Control Theory, 2017, 6 (3) : 381-407. doi: 10.3934/eect.2017020

[5]

Yuri Latushkin, Jan Prüss, Ronald Schnaubelt. Center manifolds and dynamics near equilibria of quasilinear parabolic systems with fully nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 595-633. doi: 10.3934/dcdsb.2008.9.595

[6]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[7]

Mahamadi Warma. Semi linear parabolic equations with nonlinear general Wentzell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5493-5506. doi: 10.3934/dcds.2013.33.5493

[8]

Matthias Geissert, Horst Heck, Christof Trunk. $H^{\infty}$-calculus for a system of Laplace operators with mixed order boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1259-1275. doi: 10.3934/dcdss.2013.6.1259

[9]

Petru Jebelean. Infinitely many solutions for ordinary $p$-Laplacian systems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (2) : 267-275. doi: 10.3934/cpaa.2008.7.267

[10]

B. Abdellaoui, E. Colorado, I. Peral. Existence and nonexistence results for a class of parabolic equations with mixed boundary conditions. Communications on Pure & Applied Analysis, 2006, 5 (1) : 29-54. doi: 10.3934/cpaa.2006.5.29

[11]

Santiago Cano-Casanova. Bifurcation to positive solutions in BVPs of logistic type with nonlinear indefinite mixed boundary conditions. Conference Publications, 2013, 2013 (special) : 95-104. doi: 10.3934/proc.2013.2013.95

[12]

Ciprian G. Gal, Mahamadi Warma. Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions. Evolution Equations & Control Theory, 2016, 5 (1) : 61-103. doi: 10.3934/eect.2016.5.61

[13]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Dynamic boundary conditions as limit of singularly perturbed parabolic problems. Conference Publications, 2011, 2011 (Special) : 737-746. doi: 10.3934/proc.2011.2011.737

[14]

Raluca Clendenen, Gisèle Ruiz Goldstein, Jerome A. Goldstein. Degenerate flux for dynamic boundary conditions in parabolic and hyperbolic equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 651-660. doi: 10.3934/dcdss.2016019

[15]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

[16]

Gennaro Infante. Positive solutions of differential equations with nonlinear boundary conditions. Conference Publications, 2003, 2003 (Special) : 432-438. doi: 10.3934/proc.2003.2003.432

[17]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 763-800. doi: 10.3934/dcds.2008.21.763

[18]

Roland Schnaubelt. Center manifolds and attractivity for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1193-1230. doi: 10.3934/dcds.2015.35.1193

[19]

Joachim von Below, Gaëlle Pincet Mailly. Blow up for some nonlinear parabolic problems with convection under dynamical boundary conditions. Conference Publications, 2007, 2007 (Special) : 1031-1041. doi: 10.3934/proc.2007.2007.1031

[20]

William G. Litvinov. Optimal control of electrorheological clutch described by nonlinear parabolic equation with nonlocal boundary conditions. Journal of Industrial & Management Optimization, 2011, 7 (2) : 291-315. doi: 10.3934/jimo.2011.7.291

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]