June  2016, 9(3): 737-744. doi: 10.3934/dcdss.2016025

Inverse problems for evolution equations with time dependent operator-coefficients

1. 

Department of Mathematics, The University of Jordan, Amman

2. 

Dipartimento di Matematica, Università degli Studi di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna

3. 

Hirai Sanso 12-13, Takarazuka 665-0817

Received  May 2015 Revised  July 2015 Published  April 2016

In this paper we study an inverse problem with time dependent operator-coefficients. We indicate sufficient conditions for the existence and the uniqueness of a solution to this problem. A number of concrete applications to partial differential equations is described.
Citation: Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Inverse problems for evolution equations with time dependent operator-coefficients. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 737-744. doi: 10.3934/dcdss.2016025
References:
[1]

P. Acquistapace, A unified approach to abstract linear nonautonomous parabolic equations,, Rend. Sem. Mat.Univ. Padova, 78 (1987), 47.   Google Scholar

[2]

M. Al Horani and A. Favini, Degenerate first-order identification problems in Banach spaces,, in Differential equations: inverse and direct problems (eds. A. Favini and A. Lorenzi), 251 (2006), 1.  doi: 10.1201/9781420011135.ch1.  Google Scholar

[3]

M. Al Horani and A. Favini, An identification problem for first-order degenerate differential equations,, J. Optim. Theory Appl., 130 (2006), 41.  doi: 10.1007/s10957-006-9083-y.  Google Scholar

[4]

M. Al Horani and A. Favini, Degenerate first-order inverse problems in Banach spaces,, Nonlinear Anal., 75 (2012), 68.  doi: 10.1016/j.na.2011.08.001.  Google Scholar

[5]

M. Al Horani and A. Favini, First-order inverse evolution equations,, Evol. Equ. Control Theory, 3 (2014), 355.  doi: 10.3934/eect.2014.3.355.  Google Scholar

[6]

M. Al Horani and A. Favini, Inverse problems for singular differential-operator equations with higher order polar singularities,, Discrete. Contin. Dyn. Syst. Ser. B, 19 (2014), 2159.  doi: 10.3934/dcdsb.2014.19.2159.  Google Scholar

[7]

M. Al Horani and A. Favini, Perturbation method for first and complete second order differential equations,, J. Optim. Theory Appl., 166 (2015), 949.  doi: 10.1007/s10957-015-0733-9.  Google Scholar

[8]

H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory,, Monographs in Mathematics, 89 (1995).  doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[9]

S. Bertoni, Stability of CD-systems under perturbations in the Favard class,, Mediterr. J. Math., 11 (2014), 1195.  doi: 10.1007/s00009-013-0376-8.  Google Scholar

[10]

A. Favini and A. Lorenzi, Identification problems for singular integro-differential equations of parabolic type I,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 12 (2005), 303.   Google Scholar

[11]

A. Favini and A. Lorenzi, Identification problems in singular integro-differential equations of parabolic type II,, Nonlinear Anal., 56 (2004), 879.  doi: 10.1016/j.na.2003.10.018.  Google Scholar

[12]

A. Favini, A. Lorenzi, G. Marinoschi and H. Tanabe, Perturbation methods and identification problems for degenerate evolution systems,, Advances in mathematics, (2013), 145.   Google Scholar

[13]

A. Favini, A. Lorenzi and H. Tanabe, Direct and inverse problems for systems of singular differential boundary-value problems,, Electron. J. Differential Equations, 225 (2012), 1.   Google Scholar

[14]

A. Favini, A. Lorenzi and H. Tanabe, First-order regular and degenerate identification differential problems,, Abstr. Appl. Anal., (2015).  doi: 10.1155/2015/393624.  Google Scholar

[15]

A. Favini, A. Lorenzi and H. Tanabe, Degenerate integro-differential equations of parabolic type with Robin boundary conditions,, submitted., ().   Google Scholar

[16]

A. Favini, A. Lorenzi and H. Tanabe, Direct and inverse degenerate parabolic differential equations with multi-valued operators,, Electron. J. Diff. Equ., 2015 (2015), 1.   Google Scholar

[17]

A. Favini and G. Marinoschi, Identification of the time derivative coefficient in a fast diffusion degenerate equation,, J. Optim. Theory Appl., 145 (2010), 249.  doi: 10.1007/s10957-009-9635-z.  Google Scholar

[18]

A. Favini and H. Tanabe, Degenerate differential equations of parabolic type and inverse problems,, Proceeding, (2015), 89.   Google Scholar

[19]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces,, Marcel Dekker. Inc. New York, (1999).   Google Scholar

[20]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Birkhäuser, (1995).  doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[21]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differntial Equations,, Applied Mathematical Sciences 44, 44 (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[22]

A.I. Prilepko, D.G. Orlovsky and I.A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics,, Marcel Dekker. Inc. New York, (2000).   Google Scholar

[23]

H, Tanabe, Functional Analytic Methods for Partial Differential Equations,, Monographs and Textbooks in Pure and Applied Mathematics 204, 204 (1997).   Google Scholar

show all references

References:
[1]

P. Acquistapace, A unified approach to abstract linear nonautonomous parabolic equations,, Rend. Sem. Mat.Univ. Padova, 78 (1987), 47.   Google Scholar

[2]

M. Al Horani and A. Favini, Degenerate first-order identification problems in Banach spaces,, in Differential equations: inverse and direct problems (eds. A. Favini and A. Lorenzi), 251 (2006), 1.  doi: 10.1201/9781420011135.ch1.  Google Scholar

[3]

M. Al Horani and A. Favini, An identification problem for first-order degenerate differential equations,, J. Optim. Theory Appl., 130 (2006), 41.  doi: 10.1007/s10957-006-9083-y.  Google Scholar

[4]

M. Al Horani and A. Favini, Degenerate first-order inverse problems in Banach spaces,, Nonlinear Anal., 75 (2012), 68.  doi: 10.1016/j.na.2011.08.001.  Google Scholar

[5]

M. Al Horani and A. Favini, First-order inverse evolution equations,, Evol. Equ. Control Theory, 3 (2014), 355.  doi: 10.3934/eect.2014.3.355.  Google Scholar

[6]

M. Al Horani and A. Favini, Inverse problems for singular differential-operator equations with higher order polar singularities,, Discrete. Contin. Dyn. Syst. Ser. B, 19 (2014), 2159.  doi: 10.3934/dcdsb.2014.19.2159.  Google Scholar

[7]

M. Al Horani and A. Favini, Perturbation method for first and complete second order differential equations,, J. Optim. Theory Appl., 166 (2015), 949.  doi: 10.1007/s10957-015-0733-9.  Google Scholar

[8]

H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory,, Monographs in Mathematics, 89 (1995).  doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[9]

S. Bertoni, Stability of CD-systems under perturbations in the Favard class,, Mediterr. J. Math., 11 (2014), 1195.  doi: 10.1007/s00009-013-0376-8.  Google Scholar

[10]

A. Favini and A. Lorenzi, Identification problems for singular integro-differential equations of parabolic type I,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 12 (2005), 303.   Google Scholar

[11]

A. Favini and A. Lorenzi, Identification problems in singular integro-differential equations of parabolic type II,, Nonlinear Anal., 56 (2004), 879.  doi: 10.1016/j.na.2003.10.018.  Google Scholar

[12]

A. Favini, A. Lorenzi, G. Marinoschi and H. Tanabe, Perturbation methods and identification problems for degenerate evolution systems,, Advances in mathematics, (2013), 145.   Google Scholar

[13]

A. Favini, A. Lorenzi and H. Tanabe, Direct and inverse problems for systems of singular differential boundary-value problems,, Electron. J. Differential Equations, 225 (2012), 1.   Google Scholar

[14]

A. Favini, A. Lorenzi and H. Tanabe, First-order regular and degenerate identification differential problems,, Abstr. Appl. Anal., (2015).  doi: 10.1155/2015/393624.  Google Scholar

[15]

A. Favini, A. Lorenzi and H. Tanabe, Degenerate integro-differential equations of parabolic type with Robin boundary conditions,, submitted., ().   Google Scholar

[16]

A. Favini, A. Lorenzi and H. Tanabe, Direct and inverse degenerate parabolic differential equations with multi-valued operators,, Electron. J. Diff. Equ., 2015 (2015), 1.   Google Scholar

[17]

A. Favini and G. Marinoschi, Identification of the time derivative coefficient in a fast diffusion degenerate equation,, J. Optim. Theory Appl., 145 (2010), 249.  doi: 10.1007/s10957-009-9635-z.  Google Scholar

[18]

A. Favini and H. Tanabe, Degenerate differential equations of parabolic type and inverse problems,, Proceeding, (2015), 89.   Google Scholar

[19]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces,, Marcel Dekker. Inc. New York, (1999).   Google Scholar

[20]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Birkhäuser, (1995).  doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[21]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differntial Equations,, Applied Mathematical Sciences 44, 44 (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[22]

A.I. Prilepko, D.G. Orlovsky and I.A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics,, Marcel Dekker. Inc. New York, (2000).   Google Scholar

[23]

H, Tanabe, Functional Analytic Methods for Partial Differential Equations,, Monographs and Textbooks in Pure and Applied Mathematics 204, 204 (1997).   Google Scholar

[1]

Viorel Barbu, Gabriela Marinoschi. An identification problem for a linear evolution equation in a banach space. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-12. doi: 10.3934/dcdss.2020081

[2]

Alfredo Lorenzi, Ioan I. Vrabie. An identification problem for a linear evolution equation in a Banach space and applications. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 671-691. doi: 10.3934/dcdss.2011.4.671

[3]

Atsushi Kawamoto. Hölder stability estimate in an inverse source problem for a first and half order time fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (2) : 315-330. doi: 10.3934/ipi.2018014

[4]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[5]

Mohammed Al Horani, Angelo Favini. First-order inverse evolution equations. Evolution Equations & Control Theory, 2014, 3 (3) : 355-361. doi: 10.3934/eect.2014.3.355

[6]

Rehana Naz, Fazal M Mahomed, Azam Chaudhry. First integrals of Hamiltonian systems: The inverse problem. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020121

[7]

M. Nakamura, Tohru Ozawa. The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 215-231. doi: 10.3934/dcds.1999.5.215

[8]

Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations & Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007

[9]

Fabio Camilli, Francisco Silva. A semi-discrete approximation for a first order mean field game problem. Networks & Heterogeneous Media, 2012, 7 (2) : 263-277. doi: 10.3934/nhm.2012.7.263

[10]

Monika Laskawy. Optimality conditions of the first eigenvalue of a fourth order Steklov problem. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1843-1859. doi: 10.3934/cpaa.2017089

[11]

Alfredo Lorenzi, Eugenio Sinestrari. An identification problem for a nonlinear one-dimensional wave equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5253-5271. doi: 10.3934/dcds.2013.33.5253

[12]

Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745

[13]

Valter Pohjola. An inverse problem for the magnetic Schrödinger operator on a half space with partial data. Inverse Problems & Imaging, 2014, 8 (4) : 1169-1189. doi: 10.3934/ipi.2014.8.1169

[14]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[15]

Gisella Croce. An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 507-530. doi: 10.3934/dcdss.2012.5.507

[16]

Ciro D'Apice, Olha P. Kupenko, Rosanna Manzo. On boundary optimal control problem for an arterial system: First-order optimality conditions. Networks & Heterogeneous Media, 2018, 13 (4) : 585-607. doi: 10.3934/nhm.2018027

[17]

Martino Bardi, Paola Mannucci. On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2006, 5 (4) : 709-731. doi: 10.3934/cpaa.2006.5.709

[18]

Yanbo Hu, Tong Li. The regularity of a degenerate Goursat problem for the 2-D isothermal Euler equations. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3317-3336. doi: 10.3934/cpaa.2019149

[19]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[20]

Kenichi Sakamoto, Masahiro Yamamoto. Inverse source problem with a final overdetermination for a fractional diffusion equation. Mathematical Control & Related Fields, 2011, 1 (4) : 509-518. doi: 10.3934/mcrf.2011.1.509

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (1)

[Back to Top]