June  2016, 9(3): 737-744. doi: 10.3934/dcdss.2016025

Inverse problems for evolution equations with time dependent operator-coefficients

1. 

Department of Mathematics, The University of Jordan, Amman

2. 

Dipartimento di Matematica, Università degli Studi di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna

3. 

Hirai Sanso 12-13, Takarazuka 665-0817

Received  May 2015 Revised  July 2015 Published  April 2016

In this paper we study an inverse problem with time dependent operator-coefficients. We indicate sufficient conditions for the existence and the uniqueness of a solution to this problem. A number of concrete applications to partial differential equations is described.
Citation: Mohammed Al Horani, Angelo Favini, Hiroki Tanabe. Inverse problems for evolution equations with time dependent operator-coefficients. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 737-744. doi: 10.3934/dcdss.2016025
References:
[1]

P. Acquistapace, A unified approach to abstract linear nonautonomous parabolic equations,, Rend. Sem. Mat.Univ. Padova, 78 (1987), 47.   Google Scholar

[2]

M. Al Horani and A. Favini, Degenerate first-order identification problems in Banach spaces,, in Differential equations: inverse and direct problems (eds. A. Favini and A. Lorenzi), 251 (2006), 1.  doi: 10.1201/9781420011135.ch1.  Google Scholar

[3]

M. Al Horani and A. Favini, An identification problem for first-order degenerate differential equations,, J. Optim. Theory Appl., 130 (2006), 41.  doi: 10.1007/s10957-006-9083-y.  Google Scholar

[4]

M. Al Horani and A. Favini, Degenerate first-order inverse problems in Banach spaces,, Nonlinear Anal., 75 (2012), 68.  doi: 10.1016/j.na.2011.08.001.  Google Scholar

[5]

M. Al Horani and A. Favini, First-order inverse evolution equations,, Evol. Equ. Control Theory, 3 (2014), 355.  doi: 10.3934/eect.2014.3.355.  Google Scholar

[6]

M. Al Horani and A. Favini, Inverse problems for singular differential-operator equations with higher order polar singularities,, Discrete. Contin. Dyn. Syst. Ser. B, 19 (2014), 2159.  doi: 10.3934/dcdsb.2014.19.2159.  Google Scholar

[7]

M. Al Horani and A. Favini, Perturbation method for first and complete second order differential equations,, J. Optim. Theory Appl., 166 (2015), 949.  doi: 10.1007/s10957-015-0733-9.  Google Scholar

[8]

H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory,, Monographs in Mathematics, 89 (1995).  doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[9]

S. Bertoni, Stability of CD-systems under perturbations in the Favard class,, Mediterr. J. Math., 11 (2014), 1195.  doi: 10.1007/s00009-013-0376-8.  Google Scholar

[10]

A. Favini and A. Lorenzi, Identification problems for singular integro-differential equations of parabolic type I,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 12 (2005), 303.   Google Scholar

[11]

A. Favini and A. Lorenzi, Identification problems in singular integro-differential equations of parabolic type II,, Nonlinear Anal., 56 (2004), 879.  doi: 10.1016/j.na.2003.10.018.  Google Scholar

[12]

A. Favini, A. Lorenzi, G. Marinoschi and H. Tanabe, Perturbation methods and identification problems for degenerate evolution systems,, Advances in mathematics, (2013), 145.   Google Scholar

[13]

A. Favini, A. Lorenzi and H. Tanabe, Direct and inverse problems for systems of singular differential boundary-value problems,, Electron. J. Differential Equations, 225 (2012), 1.   Google Scholar

[14]

A. Favini, A. Lorenzi and H. Tanabe, First-order regular and degenerate identification differential problems,, Abstr. Appl. Anal., (2015).  doi: 10.1155/2015/393624.  Google Scholar

[15]

A. Favini, A. Lorenzi and H. Tanabe, Degenerate integro-differential equations of parabolic type with Robin boundary conditions,, submitted., ().   Google Scholar

[16]

A. Favini, A. Lorenzi and H. Tanabe, Direct and inverse degenerate parabolic differential equations with multi-valued operators,, Electron. J. Diff. Equ., 2015 (2015), 1.   Google Scholar

[17]

A. Favini and G. Marinoschi, Identification of the time derivative coefficient in a fast diffusion degenerate equation,, J. Optim. Theory Appl., 145 (2010), 249.  doi: 10.1007/s10957-009-9635-z.  Google Scholar

[18]

A. Favini and H. Tanabe, Degenerate differential equations of parabolic type and inverse problems,, Proceeding, (2015), 89.   Google Scholar

[19]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces,, Marcel Dekker. Inc. New York, (1999).   Google Scholar

[20]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Birkhäuser, (1995).  doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[21]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differntial Equations,, Applied Mathematical Sciences 44, 44 (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[22]

A.I. Prilepko, D.G. Orlovsky and I.A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics,, Marcel Dekker. Inc. New York, (2000).   Google Scholar

[23]

H, Tanabe, Functional Analytic Methods for Partial Differential Equations,, Monographs and Textbooks in Pure and Applied Mathematics 204, 204 (1997).   Google Scholar

show all references

References:
[1]

P. Acquistapace, A unified approach to abstract linear nonautonomous parabolic equations,, Rend. Sem. Mat.Univ. Padova, 78 (1987), 47.   Google Scholar

[2]

M. Al Horani and A. Favini, Degenerate first-order identification problems in Banach spaces,, in Differential equations: inverse and direct problems (eds. A. Favini and A. Lorenzi), 251 (2006), 1.  doi: 10.1201/9781420011135.ch1.  Google Scholar

[3]

M. Al Horani and A. Favini, An identification problem for first-order degenerate differential equations,, J. Optim. Theory Appl., 130 (2006), 41.  doi: 10.1007/s10957-006-9083-y.  Google Scholar

[4]

M. Al Horani and A. Favini, Degenerate first-order inverse problems in Banach spaces,, Nonlinear Anal., 75 (2012), 68.  doi: 10.1016/j.na.2011.08.001.  Google Scholar

[5]

M. Al Horani and A. Favini, First-order inverse evolution equations,, Evol. Equ. Control Theory, 3 (2014), 355.  doi: 10.3934/eect.2014.3.355.  Google Scholar

[6]

M. Al Horani and A. Favini, Inverse problems for singular differential-operator equations with higher order polar singularities,, Discrete. Contin. Dyn. Syst. Ser. B, 19 (2014), 2159.  doi: 10.3934/dcdsb.2014.19.2159.  Google Scholar

[7]

M. Al Horani and A. Favini, Perturbation method for first and complete second order differential equations,, J. Optim. Theory Appl., 166 (2015), 949.  doi: 10.1007/s10957-015-0733-9.  Google Scholar

[8]

H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory,, Monographs in Mathematics, 89 (1995).  doi: 10.1007/978-3-0348-9221-6.  Google Scholar

[9]

S. Bertoni, Stability of CD-systems under perturbations in the Favard class,, Mediterr. J. Math., 11 (2014), 1195.  doi: 10.1007/s00009-013-0376-8.  Google Scholar

[10]

A. Favini and A. Lorenzi, Identification problems for singular integro-differential equations of parabolic type I,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 12 (2005), 303.   Google Scholar

[11]

A. Favini and A. Lorenzi, Identification problems in singular integro-differential equations of parabolic type II,, Nonlinear Anal., 56 (2004), 879.  doi: 10.1016/j.na.2003.10.018.  Google Scholar

[12]

A. Favini, A. Lorenzi, G. Marinoschi and H. Tanabe, Perturbation methods and identification problems for degenerate evolution systems,, Advances in mathematics, (2013), 145.   Google Scholar

[13]

A. Favini, A. Lorenzi and H. Tanabe, Direct and inverse problems for systems of singular differential boundary-value problems,, Electron. J. Differential Equations, 225 (2012), 1.   Google Scholar

[14]

A. Favini, A. Lorenzi and H. Tanabe, First-order regular and degenerate identification differential problems,, Abstr. Appl. Anal., (2015).  doi: 10.1155/2015/393624.  Google Scholar

[15]

A. Favini, A. Lorenzi and H. Tanabe, Degenerate integro-differential equations of parabolic type with Robin boundary conditions,, submitted., ().   Google Scholar

[16]

A. Favini, A. Lorenzi and H. Tanabe, Direct and inverse degenerate parabolic differential equations with multi-valued operators,, Electron. J. Diff. Equ., 2015 (2015), 1.   Google Scholar

[17]

A. Favini and G. Marinoschi, Identification of the time derivative coefficient in a fast diffusion degenerate equation,, J. Optim. Theory Appl., 145 (2010), 249.  doi: 10.1007/s10957-009-9635-z.  Google Scholar

[18]

A. Favini and H. Tanabe, Degenerate differential equations of parabolic type and inverse problems,, Proceeding, (2015), 89.   Google Scholar

[19]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces,, Marcel Dekker. Inc. New York, (1999).   Google Scholar

[20]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Birkhäuser, (1995).  doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[21]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differntial Equations,, Applied Mathematical Sciences 44, 44 (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[22]

A.I. Prilepko, D.G. Orlovsky and I.A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics,, Marcel Dekker. Inc. New York, (2000).   Google Scholar

[23]

H, Tanabe, Functional Analytic Methods for Partial Differential Equations,, Monographs and Textbooks in Pure and Applied Mathematics 204, 204 (1997).   Google Scholar

[1]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[2]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[3]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[4]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[5]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[6]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[7]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[8]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[9]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[10]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[11]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[12]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[13]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[14]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[15]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[16]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[17]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[18]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[19]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[20]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (61)
  • HTML views (0)
  • Cited by (2)

[Back to Top]