June  2016, 9(3): 745-757. doi: 10.3934/dcdss.2016026

Observability of $N$-dimensional integro-differential systems

1. 

Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sezione di Matematica, Sapienza Università di Roma, Via A. Scarpa 16, 00161 Roma

2. 

Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, Via Antonio Scarpa 16 I-00161 Roma, Italy

Received  March 2015 Revised  September 2015 Published  April 2016

The aim of the paper is to show a reachability result for the solution of a multidimensional coupled Petrovsky and wave system when a non local term, expressed as a convolution integral, is active. Motivations to the study are in linear acoustic theory in three dimensions. To achieve that, we prove observability estimates by means of Ingham type inequalities applied to the Fourier series expansion of the solution.
Citation: Paola Loreti, Daniela Sforza. Observability of $N$-dimensional integro-differential systems. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 745-757. doi: 10.3934/dcdss.2016026
References:
[1]

G. Gripenberg, S. O. Londen and O. J. Staffans, Volterra Integral and Functional Equations, Encyclopedia Math. Appl. 34, Cambridge Univ. Press, Cambridge, 1990. doi: 10.1017/CBO9780511662805.

[2]

A. Hanyga, Dispersion and attenuation for an acoustic wave equation consistent with viscoelasticity, J. Comput. Acoust., 22 (2014), 1450006, 22 pp. doi: 10.1142/S0218396X14500064.

[3]

A. E. Ingham, Some trigonometrical inequalities with applications to the theory of series, Math. Z., 41 (1936), 367-379. doi: 10.1007/BF01180426.

[4]

V. Komornik and P. Loreti, Ingham type theorems for vector-valued functions and observability of coupled linear system, SIAM J. Control Optim., 37 (1999), 461-485. doi: 10.1137/S0363012997317505.

[5]

V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer Monogr. Math., Springer-Verlag, New York, 2005. doi: 10.1007/b139040.

[6]

J. E. Lagnese and J.-L. Lions, Modelling Analysis and Control of Thin Plates, Rech. Math. Appl., Masson, Paris, 1988.

[7]

I. Lasiecka and R. Triggiani, Exact controllability of the wave equation with Neumann boundary control, Appl. Math. Optim., 19 (1989), 243-290. doi: 10.1007/BF01448201.

[8]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1. Contrôlabilité Exacte, with appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch, Recherches en Mathématiques Appliquées [Research in Applied Mathematics] 8, Masson, Paris, 1988.

[9]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 2. Perturbations, Recherches en Mathématiques Appliquées [Research in Applied Mathematics] 9, Masson, Paris, 1988.

[10]

P. Loreti and D. Sforza, Reachability problems for a class of integro-differential equations, J. Differential Equations, 248 (2010), 1711-1755. doi: 10.1016/j.jde.2009.09.016.

[11]

P. Loreti and D. Sforza, Multidimensional controllability problems with memory, in Modern Aspects of the Theory of Partial Differential Equations (eds. M. Ruzhansky and J. Wirth), Operator Theory: Advances and Applications 216, Birkhäuser/Springer, Basel, (2011), 261-274. doi: 10.1007/978-3-0348-0069-3_15.

[12]

P. Loreti and D. Sforza, Control problems for weakly coupled systems with memory, J. Differential Equations, 257 (2014), 1879-1938. doi: 10.1016/j.jde.2014.05.016.

[13]

J. E. McDonald, Maxwellian Intepretation of the Laplacian, Am. J. Phys., 33 (1965), 706-711.

[14]

J. Prüss, Evolutionary Integral Equations and Applications, Monographs in Mathematics, 87, Birkhäuser Verlag, Basel, 1993. doi: 10.1007/978-3-0348-8570-6.

[15]

M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, Pitman Monogr. Pure Appl. Math., 35, Longman Sci. Tech., Harlow, Essex, 1987.

[16]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions, SIAM Rev., 20 (1978), 639-739. doi: 10.1137/1020095.

[17]

R. Triggiani, Exact boundary controllability on $L_2(\Omega)\times H^{-1}(\Omega)$ of the wave equation with Dirichlet boundary control acting on a portion of the boundary $\partial\Omega$, and related problems, Appl. Math. Optim., 18 (1988), 241-277. doi: 10.1007/BF01443625.

show all references

References:
[1]

G. Gripenberg, S. O. Londen and O. J. Staffans, Volterra Integral and Functional Equations, Encyclopedia Math. Appl. 34, Cambridge Univ. Press, Cambridge, 1990. doi: 10.1017/CBO9780511662805.

[2]

A. Hanyga, Dispersion and attenuation for an acoustic wave equation consistent with viscoelasticity, J. Comput. Acoust., 22 (2014), 1450006, 22 pp. doi: 10.1142/S0218396X14500064.

[3]

A. E. Ingham, Some trigonometrical inequalities with applications to the theory of series, Math. Z., 41 (1936), 367-379. doi: 10.1007/BF01180426.

[4]

V. Komornik and P. Loreti, Ingham type theorems for vector-valued functions and observability of coupled linear system, SIAM J. Control Optim., 37 (1999), 461-485. doi: 10.1137/S0363012997317505.

[5]

V. Komornik and P. Loreti, Fourier Series in Control Theory, Springer Monogr. Math., Springer-Verlag, New York, 2005. doi: 10.1007/b139040.

[6]

J. E. Lagnese and J.-L. Lions, Modelling Analysis and Control of Thin Plates, Rech. Math. Appl., Masson, Paris, 1988.

[7]

I. Lasiecka and R. Triggiani, Exact controllability of the wave equation with Neumann boundary control, Appl. Math. Optim., 19 (1989), 243-290. doi: 10.1007/BF01448201.

[8]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1. Contrôlabilité Exacte, with appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch, Recherches en Mathématiques Appliquées [Research in Applied Mathematics] 8, Masson, Paris, 1988.

[9]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 2. Perturbations, Recherches en Mathématiques Appliquées [Research in Applied Mathematics] 9, Masson, Paris, 1988.

[10]

P. Loreti and D. Sforza, Reachability problems for a class of integro-differential equations, J. Differential Equations, 248 (2010), 1711-1755. doi: 10.1016/j.jde.2009.09.016.

[11]

P. Loreti and D. Sforza, Multidimensional controllability problems with memory, in Modern Aspects of the Theory of Partial Differential Equations (eds. M. Ruzhansky and J. Wirth), Operator Theory: Advances and Applications 216, Birkhäuser/Springer, Basel, (2011), 261-274. doi: 10.1007/978-3-0348-0069-3_15.

[12]

P. Loreti and D. Sforza, Control problems for weakly coupled systems with memory, J. Differential Equations, 257 (2014), 1879-1938. doi: 10.1016/j.jde.2014.05.016.

[13]

J. E. McDonald, Maxwellian Intepretation of the Laplacian, Am. J. Phys., 33 (1965), 706-711.

[14]

J. Prüss, Evolutionary Integral Equations and Applications, Monographs in Mathematics, 87, Birkhäuser Verlag, Basel, 1993. doi: 10.1007/978-3-0348-8570-6.

[15]

M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, Pitman Monogr. Pure Appl. Math., 35, Longman Sci. Tech., Harlow, Essex, 1987.

[16]

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions, SIAM Rev., 20 (1978), 639-739. doi: 10.1137/1020095.

[17]

R. Triggiani, Exact boundary controllability on $L_2(\Omega)\times H^{-1}(\Omega)$ of the wave equation with Dirichlet boundary control acting on a portion of the boundary $\partial\Omega$, and related problems, Appl. Math. Optim., 18 (1988), 241-277. doi: 10.1007/BF01443625.

[1]

Uwe Helmke, Jens Jordan, Julia Lieb. Probability estimates for reachability of linear systems defined over finite fields. Advances in Mathematics of Communications, 2016, 10 (1) : 63-78. doi: 10.3934/amc.2016.10.63

[2]

W. R. Madych. Behavior in $ L^\infty $ of convolution transforms with dilated kernels. Mathematical Foundations of Computing, 2022  doi: 10.3934/mfc.2022005

[3]

Michael Ruzhansky, Jens Wirth. Dispersive type estimates for fourier integrals and applications to hyperbolic systems. Conference Publications, 2011, 2011 (Special) : 1263-1270. doi: 10.3934/proc.2011.2011.1263

[4]

Diogo A. Gomes, Gabriele Terrone. Bernstein estimates: weakly coupled systems and integral equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 861-883. doi: 10.3934/cpaa.2012.11.861

[5]

El Mustapha Ait Ben Hassi, Farid Ammar khodja, Abdelkarim Hajjaj, Lahcen Maniar. Carleman Estimates and null controllability of coupled degenerate systems. Evolution Equations and Control Theory, 2013, 2 (3) : 441-459. doi: 10.3934/eect.2013.2.441

[6]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[7]

Ayechi Radhia, Khenissi Moez. Local indirect stabilization of same coupled evolution systems through resolvent estimates. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1573-1597. doi: 10.3934/dcdss.2022099

[8]

Michel Potier-Ferry, Foudil Mohri, Fan Xu, Noureddine Damil, Bouazza Braikat, Khadija Mhada, Heng Hu, Qun Huang, Saeid Nezamabadi. Cellular instabilities analyzed by multi-scale Fourier series: A review. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 585-597. doi: 10.3934/dcdss.2016013

[9]

Ferenc Weisz. Cesàro summability and Lebesgue points of higher dimensional Fourier series. Mathematical Foundations of Computing, 2022, 5 (3) : 241-257. doi: 10.3934/mfc.2021033

[10]

Da Xu. Numerical solutions of viscoelastic bending wave equations with two term time kernels by Runge-Kutta convolution quadrature. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2389-2416. doi: 10.3934/dcdsb.2017122

[11]

Jiecheng Chen, Dashan Fan, Lijing Sun. Asymptotic estimates for unimodular Fourier multipliers on modulation spaces. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 467-485. doi: 10.3934/dcds.2012.32.467

[12]

Philippe Chartier, Ander Murua, Jesús María Sanz-Serna. A formal series approach to averaging: Exponentially small error estimates. Discrete and Continuous Dynamical Systems, 2012, 32 (9) : 3009-3027. doi: 10.3934/dcds.2012.32.3009

[13]

Jan-Cornelius Molnar. On two-sided estimates for the nonlinear Fourier transform of KdV. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3339-3356. doi: 10.3934/dcds.2016.36.3339

[14]

Barbara Brandolini, Francesco Chiacchio, Jeffrey J. Langford. Estimates for sums of eigenvalues of the free plate via the fourier transform. Communications on Pure and Applied Analysis, 2020, 19 (1) : 113-122. doi: 10.3934/cpaa.2020007

[15]

Ghobad Barmalzan, Ali Akbar Hosseinzadeh, Narayanaswamy Balakrishnan. Stochastic comparisons of series-parallel and parallel-series systems with dependence between components and also of subsystems. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021101

[16]

Palle Jorgensen, James Tian. Harmonic analysis of network systems via kernels and their boundary realizations. Discrete and Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021105

[17]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete and Continuous Dynamical Systems, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[18]

Reinhard Racke. Instability of coupled systems with delay. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1753-1773. doi: 10.3934/cpaa.2012.11.1753

[19]

Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281

[20]

Xianchao Wang, Jiaqi Zhu, Minghui Song, Wei Wu. Fourier method for reconstructing elastic body force from the coupled-wave field. Inverse Problems and Imaging, 2022, 16 (2) : 325-340. doi: 10.3934/ipi.2021052

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (230)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]