June  2016, 9(3): 759-775. doi: 10.3934/dcdss.2016027

Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions

1. 

Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 7348 - SP2MI, Boulevard Marie et Pierre Curie - Téléport 2, F-86962 Chasseneuil Futuroscope Cedex, France

2. 

Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 7348 - SP2MI, Boulevard Marie et Pierre Curie - Téléport 2, 86962 Chasseneuil Futuroscope Cedex

Received  March 2015 Revised  April 2015 Published  April 2016

Our aim in this paper is to prove the existence and uniqueness of solutions to Cahn-Hilliard and Allen-Cahn type equations based on a modification of the Ginzburg-Landau free energy proposed in [12] (see also [16]) which takes into account strong anisotropy effects. In particular, the free energy contains a regularization term, called Willmore regularization.
Citation: Ahmad Makki, Alain Miranville. Existence of solutions for anisotropic Cahn-Hilliard and Allen-Cahn systems in higher space dimensions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 759-775. doi: 10.3934/dcdss.2016027
References:
[1]

S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,, Acta Metall., 27 (1979), 1085. doi: 10.1016/0001-6160(79)90196-2.

[2]

J. Berry, K. R. Elder and M. Grant, Simulation of an atomistic dynamic field theory for monatomic liquids: Freezing and glass formation,, Phys. Rev. E, 77 (2008). doi: 10.1103/PhysRevE.77.061506.

[3]

J. Berry, M. Grant and K. R. Elder, Diffusive atomistic dynamics of edge dislocations in two dimensions,, Phys. Rev. E, 73 (2006). doi: 10.1103/PhysRevE.73.031609.

[4]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy,, J. Chem. Phys., 28 (1958), 258.

[5]

G. Caginalp, An analysis of a phase field model of a free boundary,, Arch. Ration. Mech. Anal., 92 (1986), 205. doi: 10.1007/BF00254827.

[6]

F. Chen and J. Shen, Efficient energy stable schemes with spectral discretization in space for anisotropic Cahn-Hilliard systems,, Commun. Comput. Phys., 13 (2013), 1189.

[7]

P. G. de Gennes, Dynamics of fluctuations and spinodal decomposition in polymer blends,, J. Chem. Phys., 72 (1980), 4756. doi: 10.1063/1.439809.

[8]

P. Galenko, D. Danilov and V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics,, Phys. Rev. E, 79 (2009). doi: 10.1103/PhysRevE.79.051110.

[9]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations,, Phys. Rev. E, 47 (1993), 4289. doi: 10.1103/PhysRevE.47.4289.

[10]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations,, Phys. Rev. E, 47 (1993), 4301. doi: 10.1103/PhysRevE.47.4301.

[11]

Z. Hu, S. M. Wise, C. Wang and J. S. Lowengrub, Stable finite difference, nonlinear multigrid simulation of the phase field crystal equation,, J. Comput. Phys., 228 (2009), 5323. doi: 10.1016/j.jcp.2009.04.020.

[12]

R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth,, Phys. D, 63 (1993), 410. doi: 10.1016/0167-2789(93)90120-P.

[13]

M. Korzec, P. Nayar and P. Rybka, Global weak solutions to a sixth order Cahn-Hilliard type equation,, SIAM J. Math. Anal., 44 (2012), 3369. doi: 10.1137/100817590.

[14]

M. Korzec and P. Rybka, On a higher order convective Cahn-Hilliard type equation,, SIAM J. Appl. Math., 72 (2012), 1343. doi: 10.1137/110834123.

[15]

A. Miranville, Existence of solutions for a one-dimensional Allen-Cahn equation,, J. Appl. Anal. Comput., 3 (2013), 265.

[16]

A. Makki and A. Miranville, Well-posedness for one-dimensional anisotropic Cahn-Hilliard and Allen-Cahn systems,, Electron. J. Differential Equaytions, (2015), 1.

[17]

T. V. Savina, A. A. Golovin, S. H. Davis, A. A. Nepomnyashchy and P. W. Voorhees, Faceting of a growing crystal surface by surface diffusion,, Phys. Rev. E, 67 (2003). doi: 10.1103/PhysRevE.67.021606.

[18]

S. Torabi, J. Lowengrub, A. Voigt and S. Wise, A new phase-field model for strongly anisotropic systems,, Proc. R. Soc. A, 465 (2009), 1337. doi: 10.1098/rspa.2008.0385.

[19]

J. E. Taylor and J. W. Cahn, Diffuse interfaces with sharp corners and facets: Phase-field models with strongly anisotropic surfaces,, Phys. D, 112 (1998), 381. doi: 10.1016/S0167-2789(97)00177-2.

show all references

References:
[1]

S. M. Allen and J. W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,, Acta Metall., 27 (1979), 1085. doi: 10.1016/0001-6160(79)90196-2.

[2]

J. Berry, K. R. Elder and M. Grant, Simulation of an atomistic dynamic field theory for monatomic liquids: Freezing and glass formation,, Phys. Rev. E, 77 (2008). doi: 10.1103/PhysRevE.77.061506.

[3]

J. Berry, M. Grant and K. R. Elder, Diffusive atomistic dynamics of edge dislocations in two dimensions,, Phys. Rev. E, 73 (2006). doi: 10.1103/PhysRevE.73.031609.

[4]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy,, J. Chem. Phys., 28 (1958), 258.

[5]

G. Caginalp, An analysis of a phase field model of a free boundary,, Arch. Ration. Mech. Anal., 92 (1986), 205. doi: 10.1007/BF00254827.

[6]

F. Chen and J. Shen, Efficient energy stable schemes with spectral discretization in space for anisotropic Cahn-Hilliard systems,, Commun. Comput. Phys., 13 (2013), 1189.

[7]

P. G. de Gennes, Dynamics of fluctuations and spinodal decomposition in polymer blends,, J. Chem. Phys., 72 (1980), 4756. doi: 10.1063/1.439809.

[8]

P. Galenko, D. Danilov and V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics,, Phys. Rev. E, 79 (2009). doi: 10.1103/PhysRevE.79.051110.

[9]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations,, Phys. Rev. E, 47 (1993), 4289. doi: 10.1103/PhysRevE.47.4289.

[10]

G. Gompper and M. Kraus, Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations,, Phys. Rev. E, 47 (1993), 4301. doi: 10.1103/PhysRevE.47.4301.

[11]

Z. Hu, S. M. Wise, C. Wang and J. S. Lowengrub, Stable finite difference, nonlinear multigrid simulation of the phase field crystal equation,, J. Comput. Phys., 228 (2009), 5323. doi: 10.1016/j.jcp.2009.04.020.

[12]

R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth,, Phys. D, 63 (1993), 410. doi: 10.1016/0167-2789(93)90120-P.

[13]

M. Korzec, P. Nayar and P. Rybka, Global weak solutions to a sixth order Cahn-Hilliard type equation,, SIAM J. Math. Anal., 44 (2012), 3369. doi: 10.1137/100817590.

[14]

M. Korzec and P. Rybka, On a higher order convective Cahn-Hilliard type equation,, SIAM J. Appl. Math., 72 (2012), 1343. doi: 10.1137/110834123.

[15]

A. Miranville, Existence of solutions for a one-dimensional Allen-Cahn equation,, J. Appl. Anal. Comput., 3 (2013), 265.

[16]

A. Makki and A. Miranville, Well-posedness for one-dimensional anisotropic Cahn-Hilliard and Allen-Cahn systems,, Electron. J. Differential Equaytions, (2015), 1.

[17]

T. V. Savina, A. A. Golovin, S. H. Davis, A. A. Nepomnyashchy and P. W. Voorhees, Faceting of a growing crystal surface by surface diffusion,, Phys. Rev. E, 67 (2003). doi: 10.1103/PhysRevE.67.021606.

[18]

S. Torabi, J. Lowengrub, A. Voigt and S. Wise, A new phase-field model for strongly anisotropic systems,, Proc. R. Soc. A, 465 (2009), 1337. doi: 10.1098/rspa.2008.0385.

[19]

J. E. Taylor and J. W. Cahn, Diffuse interfaces with sharp corners and facets: Phase-field models with strongly anisotropic surfaces,, Phys. D, 112 (1998), 381. doi: 10.1016/S0167-2789(97)00177-2.

[1]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[2]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[3]

Cristina Pocci. On singular limit of a nonlinear $p$-order equation related to Cahn-Hilliard and Allen-Cahn evolutions. Evolution Equations & Control Theory, 2013, 2 (3) : 517-530. doi: 10.3934/eect.2013.2.517

[4]

Christopher P. Grant. Grain sizes in the discrete Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 127-146. doi: 10.3934/dcds.2001.7.127

[5]

Jie Shen, Xiaofeng Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1669-1691. doi: 10.3934/dcds.2010.28.1669

[6]

Alain Miranville, Wafa Saoud, Raafat Talhouk. On the Cahn-Hilliard/Allen-Cahn equations with singular potentials. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-19. doi: 10.3934/dcdsb.2018308

[7]

Shixing Li, Dongming Yan. On the steady state bifurcation of the Cahn-Hilliard/Allen-Cahn system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3077-3088. doi: 10.3934/dcdsb.2018301

[8]

Haydi Israel. Well-posedness and long time behavior of an Allen-Cahn type equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2811-2827. doi: 10.3934/cpaa.2013.12.2811

[9]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

[10]

Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625

[11]

Gianni Gilardi. On an Allen-Cahn type integrodifferential equation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 703-709. doi: 10.3934/dcdss.2013.6.703

[12]

Irena Pawłow. Thermodynamically consistent Cahn-Hilliard and Allen-Cahn models in elastic solids. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1169-1191. doi: 10.3934/dcds.2006.15.1169

[13]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[14]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[15]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[16]

Hongmei Cheng, Rong Yuan. Multidimensional stability of disturbed pyramidal traveling fronts in the Allen-Cahn equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1015-1029. doi: 10.3934/dcdsb.2015.20.1015

[17]

Xinlong Feng, Huailing Song, Tao Tang, Jiang Yang. Nonlinear stability of the implicit-explicit methods for the Allen-Cahn equation. Inverse Problems & Imaging, 2013, 7 (3) : 679-695. doi: 10.3934/ipi.2013.7.679

[18]

Christos Sourdis. On the growth of the energy of entire solutions to the vector Allen-Cahn equation. Communications on Pure & Applied Analysis, 2015, 14 (2) : 577-584. doi: 10.3934/cpaa.2015.14.577

[19]

Paul H. Rabinowitz, Ed Stredulinsky. On a class of infinite transition solutions for an Allen-Cahn model equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 319-332. doi: 10.3934/dcds.2008.21.319

[20]

Ciprian G. Gal, Maurizio Grasselli. The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 1009-1040. doi: 10.3934/dcds.2008.22.1009

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]