Citation: |
[1] |
G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: Symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math., 65 (2001), 9-33.doi: 10.1023/A:1010602715526. |
[2] |
L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $\mathbb R^3$ and a conjecture of De Giorgi, J. Amer. Math. Soc., 13 (2000), 725-739.doi: 10.1090/S0894-0347-00-00345-3. |
[3] |
V. I. Bogachev, Gaussian Measures, Mathematical Surveys and Monographs, 62, American Mathematical Society, Providence, RI, 1998.doi: 10.1090/surv/062. |
[4] |
X. Cabré and E. Cinti, Sharp energy estimates for nonlinear fractional diffusion equations, Calc. Var. Partial Differential Equations, 49 (2014), 233-269.doi: 10.1007/s00526-012-0580-6. |
[5] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.doi: 10.1080/03605300600987306. |
[6] |
A. Cesaroni, M. Novaga and A. Pinamonti, One-dimensional symmetry for semilinear equations with unbounded drift. Comm. Pure Appl. Analysis, 12 (2013), 2203-2211.doi: 10.3934/cpaa.2013.12.2203. |
[7] |
A. Cesaroni, M. Novaga and E. Valdinoci, A symmetry result for the Ornstein-Uhlenbeck operator, Discrete Contin. Dyn. Syst.-A, 34 (2014), 2451-2467.doi: 10.3934/dcds.2014.34.2451. |
[8] |
E. De Giorgi, Convergence problems for functionals and operators, in: Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), pp. 131-188, Pitagora, Bologna, 1979. Also in: Ennio De Giorgi: Selected Papers (L. Ambrosio, G. Dal Maso, M. Forti, M. Miranda, S. Spagnolo eds.), 487-516, Springer, 2006. |
[9] |
M. del Pino, M. Kowalczyk and J. Wei, On a conjecture by De Giorgi in dimensions 9 and higher, in Symmetry for elliptic PDEs, Contemp. Math., 528, Amer. Math. Soc., Providence, RI, (2010), 115-137.doi: 10.1090/conm/528/10418. |
[10] |
E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116.doi: 10.1080/03605308208820218. |
[11] |
A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: New results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741-791. |
[12] |
A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems, in Recent progress on reaction-diffusion systems and viscosity solutions, 74-96, World Sci. Publ., Hackensack, NJ, 2009.doi: 10.1142/9789812834744_0004. |
[13] |
N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481-491.doi: 10.1007/s002080050196. |
[14] |
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226.doi: 10.1090/S0002-9947-1972-0293384-6. |
[15] |
M. Novaga, D. Pallara and Y. Sire, A fractional isoperimetric problem in the Wiener space, J. Anal. Math., to appear. |
[16] |
O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math. (2), 169 (2009), 41-78.doi: 10.4007/annals.2009.169.41. |
[17] |
I. Shigekawa, Stochastic Analysis, American Mathematical Society, 2004. |
[18] |
Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.doi: 10.1016/j.jfa.2009.01.020. |
[19] |
P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math., 503 (1998), 63-85. |
[20] |
P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal., 141 (1998), 375-400.doi: 10.1007/s002050050081. |
[21] |
P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122.doi: 10.1080/03605301003735680. |
[22] |
K. Yosida, Functional Analysis. Sixth Edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 123 Springer-Verlag, Berlin-New-York, 1980. |