-
Previous Article
Strong solutions of quasilinear equations in Banach spaces not solvable with respect to the highest-order derivative
- DCDS-S Home
- This Issue
-
Next Article
Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback
A symmetry result for degenerate elliptic equations on the Wiener space with nonlinear boundary conditions and applications
1. | Dipartimento di Matematica, Universitá di Pisa, Largo Bruno Pontecorvo 5, I-56127 Pisa |
2. | Dipartimento di Matematica e Fisica "Ennio De Giorgi" & INFN, Università del Salento, P.O.B. 193, 73100, Lecce, Italy |
3. | Université Aix-Marseille, I2M, UMR CNRS 7353, Marseille, France |
References:
[1] |
G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: Symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math., 65 (2001), 9-33.
doi: 10.1023/A:1010602715526. |
[2] |
L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $\mathbb R^3$ and a conjecture of De Giorgi, J. Amer. Math. Soc., 13 (2000), 725-739.
doi: 10.1090/S0894-0347-00-00345-3. |
[3] |
V. I. Bogachev, Gaussian Measures, Mathematical Surveys and Monographs, 62, American Mathematical Society, Providence, RI, 1998.
doi: 10.1090/surv/062. |
[4] |
X. Cabré and E. Cinti, Sharp energy estimates for nonlinear fractional diffusion equations, Calc. Var. Partial Differential Equations, 49 (2014), 233-269.
doi: 10.1007/s00526-012-0580-6. |
[5] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[6] |
A. Cesaroni, M. Novaga and A. Pinamonti, One-dimensional symmetry for semilinear equations with unbounded drift. Comm. Pure Appl. Analysis, 12 (2013), 2203-2211.
doi: 10.3934/cpaa.2013.12.2203. |
[7] |
A. Cesaroni, M. Novaga and E. Valdinoci, A symmetry result for the Ornstein-Uhlenbeck operator, Discrete Contin. Dyn. Syst.-A, 34 (2014), 2451-2467.
doi: 10.3934/dcds.2014.34.2451. |
[8] |
E. De Giorgi, Convergence problems for functionals and operators, in: Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), pp. 131-188, Pitagora, Bologna, 1979. Also in: Ennio De Giorgi: Selected Papers (L. Ambrosio, G. Dal Maso, M. Forti, M. Miranda, S. Spagnolo eds.), 487-516, Springer, 2006. |
[9] |
M. del Pino, M. Kowalczyk and J. Wei, On a conjecture by De Giorgi in dimensions 9 and higher, in Symmetry for elliptic PDEs, Contemp. Math., 528, Amer. Math. Soc., Providence, RI, (2010), 115-137.
doi: 10.1090/conm/528/10418. |
[10] |
E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116.
doi: 10.1080/03605308208820218. |
[11] |
A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: New results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741-791. |
[12] |
A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems, in Recent progress on reaction-diffusion systems and viscosity solutions, 74-96, World Sci. Publ., Hackensack, NJ, 2009.
doi: 10.1142/9789812834744_0004. |
[13] |
N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481-491.
doi: 10.1007/s002080050196. |
[14] |
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226.
doi: 10.1090/S0002-9947-1972-0293384-6. |
[15] |
M. Novaga, D. Pallara and Y. Sire, A fractional isoperimetric problem in the Wiener space,, J. Anal. Math., ().
|
[16] |
O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math. (2), 169 (2009), 41-78.
doi: 10.4007/annals.2009.169.41. |
[17] |
I. Shigekawa, Stochastic Analysis, American Mathematical Society, 2004. |
[18] |
Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.
doi: 10.1016/j.jfa.2009.01.020. |
[19] |
P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math., 503 (1998), 63-85. |
[20] |
P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal., 141 (1998), 375-400.
doi: 10.1007/s002050050081. |
[21] |
P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122.
doi: 10.1080/03605301003735680. |
[22] |
K. Yosida, Functional Analysis. Sixth Edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 123 Springer-Verlag, Berlin-New-York, 1980. |
show all references
References:
[1] |
G. Alberti, L. Ambrosio and X. Cabré, On a long-standing conjecture of E. De Giorgi: Symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math., 65 (2001), 9-33.
doi: 10.1023/A:1010602715526. |
[2] |
L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in $\mathbb R^3$ and a conjecture of De Giorgi, J. Amer. Math. Soc., 13 (2000), 725-739.
doi: 10.1090/S0894-0347-00-00345-3. |
[3] |
V. I. Bogachev, Gaussian Measures, Mathematical Surveys and Monographs, 62, American Mathematical Society, Providence, RI, 1998.
doi: 10.1090/surv/062. |
[4] |
X. Cabré and E. Cinti, Sharp energy estimates for nonlinear fractional diffusion equations, Calc. Var. Partial Differential Equations, 49 (2014), 233-269.
doi: 10.1007/s00526-012-0580-6. |
[5] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[6] |
A. Cesaroni, M. Novaga and A. Pinamonti, One-dimensional symmetry for semilinear equations with unbounded drift. Comm. Pure Appl. Analysis, 12 (2013), 2203-2211.
doi: 10.3934/cpaa.2013.12.2203. |
[7] |
A. Cesaroni, M. Novaga and E. Valdinoci, A symmetry result for the Ornstein-Uhlenbeck operator, Discrete Contin. Dyn. Syst.-A, 34 (2014), 2451-2467.
doi: 10.3934/dcds.2014.34.2451. |
[8] |
E. De Giorgi, Convergence problems for functionals and operators, in: Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978), pp. 131-188, Pitagora, Bologna, 1979. Also in: Ennio De Giorgi: Selected Papers (L. Ambrosio, G. Dal Maso, M. Forti, M. Miranda, S. Spagnolo eds.), 487-516, Springer, 2006. |
[9] |
M. del Pino, M. Kowalczyk and J. Wei, On a conjecture by De Giorgi in dimensions 9 and higher, in Symmetry for elliptic PDEs, Contemp. Math., 528, Amer. Math. Soc., Providence, RI, (2010), 115-137.
doi: 10.1090/conm/528/10418. |
[10] |
E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116.
doi: 10.1080/03605308208820218. |
[11] |
A. Farina, B. Sciunzi and E. Valdinoci, Bernstein and De Giorgi type problems: New results via a geometric approach, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), 741-791. |
[12] |
A. Farina and E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems, in Recent progress on reaction-diffusion systems and viscosity solutions, 74-96, World Sci. Publ., Hackensack, NJ, 2009.
doi: 10.1142/9789812834744_0004. |
[13] |
N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481-491.
doi: 10.1007/s002080050196. |
[14] |
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226.
doi: 10.1090/S0002-9947-1972-0293384-6. |
[15] |
M. Novaga, D. Pallara and Y. Sire, A fractional isoperimetric problem in the Wiener space,, J. Anal. Math., ().
|
[16] |
O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math. (2), 169 (2009), 41-78.
doi: 10.4007/annals.2009.169.41. |
[17] |
I. Shigekawa, Stochastic Analysis, American Mathematical Society, 2004. |
[18] |
Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: A geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842-1864.
doi: 10.1016/j.jfa.2009.01.020. |
[19] |
P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math., 503 (1998), 63-85. |
[20] |
P. Sternberg and K. Zumbrun, Connectivity of phase boundaries in strictly convex domains, Arch. Rational Mech. Anal., 141 (1998), 375-400.
doi: 10.1007/s002050050081. |
[21] |
P. R. Stinga and J. L. Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations, 35 (2010), 2092-2122.
doi: 10.1080/03605301003735680. |
[22] |
K. Yosida, Functional Analysis. Sixth Edition, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 123 Springer-Verlag, Berlin-New-York, 1980. |
[1] |
Annalisa Cesaroni, Matteo Novaga, Enrico Valdinoci. A symmetry result for the Ornstein-Uhlenbeck operator. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2451-2467. doi: 10.3934/dcds.2014.34.2451 |
[2] |
Filomena Feo, Pablo Raúl Stinga, Bruno Volzone. The fractional nonlocal Ornstein-Uhlenbeck equation, Gaussian symmetrization and regularity. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3269-3298. doi: 10.3934/dcds.2018142 |
[3] |
Simona Fornaro, Abdelaziz Rhandi. On the Ornstein Uhlenbeck operator perturbed by singular potentials in $L^p$--spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5049-5058. doi: 10.3934/dcds.2013.33.5049 |
[4] |
Thi Tuyen Nguyen. Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Communications on Pure and Applied Analysis, 2019, 18 (3) : 999-1021. doi: 10.3934/cpaa.2019049 |
[5] |
Samuel Herrmann, Nicolas Massin. Exit problem for Ornstein-Uhlenbeck processes: A random walk approach. Discrete and Continuous Dynamical Systems - B, 2020, 25 (8) : 3199-3215. doi: 10.3934/dcdsb.2020058 |
[6] |
Mondher Damak, Brice Franke, Nejib Yaakoubi. Accelerating planar Ornstein-Uhlenbeck diffusion with suitable drift. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4093-4112. doi: 10.3934/dcds.2020173 |
[7] |
Tomasz Komorowski, Lenya Ryzhik. Fluctuations of solutions to Wigner equation with an Ornstein-Uhlenbeck potential. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 871-914. doi: 10.3934/dcdsb.2012.17.871 |
[8] |
Kai Liu. Quadratic control problem of neutral Ornstein-Uhlenbeck processes with control delays. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1651-1661. doi: 10.3934/dcdsb.2013.18.1651 |
[9] |
Tomasz Komorowski, Łukasz Stȩpień. Kinetic limit for a harmonic chain with a conservative Ornstein-Uhlenbeck stochastic perturbation. Kinetic and Related Models, 2018, 11 (2) : 239-278. doi: 10.3934/krm.2018013 |
[10] |
Giuseppe Da Prato. Schauder estimates for some perturbation of an infinite dimensional Ornstein--Uhlenbeck operator. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 637-647. doi: 10.3934/dcdss.2013.6.637 |
[11] |
Virginia Giorno, Serena Spina. On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 285-302. doi: 10.3934/mbe.2014.11.285 |
[12] |
Antonio Avantaggiati, Paola Loreti. Hypercontractivity, Hopf-Lax type formulas, Ornstein-Uhlenbeck operators (II). Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 525-545. doi: 10.3934/dcdss.2009.2.525 |
[13] |
Tiziana Durante, Abdelaziz Rhandi. On the essential self-adjointness of Ornstein-Uhlenbeck operators perturbed by inverse-square potentials. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 649-655. doi: 10.3934/dcdss.2013.6.649 |
[14] |
Yin Li, Xuerong Mao, Yazhi Song, Jian Tao. Optimal investment and proportional reinsurance strategy under the mean-reverting Ornstein-Uhlenbeck process and net profit condition. Journal of Industrial and Management Optimization, 2022, 18 (1) : 75-93. doi: 10.3934/jimo.2020143 |
[15] |
Delio Mugnolo, Abdelaziz Rhandi. Ornstein–Uhlenbeck semigroups on star graphs. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022030 |
[16] |
Alessia E. Kogoj. A Zaremba-type criterion for hypoelliptic degenerate Ornstein–Uhlenbeck operators. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3491-3494. doi: 10.3934/dcdss.2020112 |
[17] |
Luigi Ambrosio, Michele Miranda jr., Diego Pallara. Sets with finite perimeter in Wiener spaces, perimeter measure and boundary rectifiability. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 591-606. doi: 10.3934/dcds.2010.28.591 |
[18] |
Pascal Auscher, Sylvie Monniaux, Pierre Portal. The maximal regularity operator on tent spaces. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2213-2219. doi: 10.3934/cpaa.2012.11.2213 |
[19] |
Daniel Grieser. A natural differential operator on conic spaces. Conference Publications, 2011, 2011 (Special) : 568-577. doi: 10.3934/proc.2011.2011.568 |
[20] |
Haim Brezis, Petru Mironescu. Composition in fractional Sobolev spaces. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 241-246. doi: 10.3934/dcds.2001.7.241 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]