June  2016, 9(3): 833-846. doi: 10.3934/dcdss.2016031

Strong solutions of quasilinear equations in Banach spaces not solvable with respect to the highest-order derivative

1. 

South Ural State University, 76 Lenina Av., Chelyabinsk, 454080, Russian Federation

Received  March 2015 Revised  June 2015 Published  April 2016

By means of the Mittag-Leffler function existence and uniqueness conditions are obtained for a strong solution of the Cauchy problem to quasilinear differential equation in a Banach space, solved with respect to the highest-order derivative. The results are used in the study of quasilinear equations with degenerate operator at the highest-order derivative. Some special restrictions for nonlinear operator in the equation are used here. Existence conditions of a unique strong solution for the Cauchy problem and generalized Showalter--Sidorov for degenerate quasilinear equations were found. The obtained results are illustrated by an example of initial-boundary value problem for a quasilinear system of equations not resolved with respect to the highest-order time derivative.
Citation: Marina V. Plekhanova. Strong solutions of quasilinear equations in Banach spaces not solvable with respect to the highest-order derivative. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 833-846. doi: 10.3934/dcdss.2016031
References:
[1]

P. N. Davydov and V. E. Fedorov, On Nonlocal Solutions of Semilinear Equations of the Sobolev Type, Differ. Equ., 49 (2013), 326-335. doi: 10.1134/S0012266113030087.

[2]

G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, New York, Basel, 2003. doi: 10.1201/9780203911433.

[3]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker, New York, 1999.

[4]

V. E. Fedorov and P. N. Davydov, Polulinejnye vyrozhdennye evolyucionnye uravneniya i nelinejnye sistemy gidrodinamicheskogo tipa, (Russian) [Degenerate semilinear evolution equations and nonlinear systems of hydrodynamic type] Trudy instituta matematiki i mekhaniki UrO RAN, 19 (2013), 267-278.

[5]

V. E. Fedorov and M. V. Plekhanova, Optimal control of Sobolev type linear equations, Differ. Equ., 40 (2004), 1627-1637. doi: 10.1007/s10625-005-0082-9.

[6]

A. I. Kozhanov, Boundary value problems for some classes of higher-order equations that are unsolved with respect to the highest derivative, Siberian Math. J., 35 (1994), 359-376. doi: 10.1007/BF02104779.

[7]

M. V. Plekhanova and V. E. Fedorov, On the existence and uniqueness of solutions of optimal control problems of linear distributed systems which are not solved with respect to the time derivative, Izvestiya: Mathematics, 75 (2011), 395-412. doi: 10.1070/IM2011v075n02ABEH002538.

[8]

M. V. Plekhanova and V. E. Fedorov, Optimal'noe Upravlenie Vyrozddennymi Raspredelennymi Sistemami, (Russian) [Optimal control of degenerate distributed systems], South Ural State University, Chelyabinsk, 2013.

[9]

R. E. Showalter, Nonlinear degenerate evolution equations and partial differential equations of mixed type, SIAM J. Math. Anal., 6 (1975), 25-42. doi: 10.1137/0506004.

[10]

N. A. Sidorov, Ob odnom klasse vyrozhdennyx differencialnyx uravneniy s konvergentsiey, (Russian) [On a class of degenerate differential equations with convergence] Mathematical Notes, 63 (1984), 569-578.

[11]

N. Sidorov, B. Loginov, A. Sinitsyn and M. Falaleev, Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications, Dordrecht, Boston, London, 2002. doi: 10.1007/978-94-017-2122-6.

[12]

A. G. Sveshnikov, A. B. Al'shin, M. O. Korpusov and Yu. D. Pletner, Lineinye I Nelineinye Uravneniya Sobolevskogo Tipa, (Russian) [Linear and Nonlinear Equations of the Sobolev Type], Fizmatlit, Moscow, 2007.

[13]

G. A. Sviridyuk, Polulinejnye uravneniya tipa soboleva s otnositelno ogranichennym operatorom, (Russian) [Semilinear equations of Sobolev type with relatively bounded operator] Doklady AN SSSR, 318 (1991), 828-831.

[14]

G. A. Sviridyuk and V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, Utrecht, Boston, 2003. doi: 10.1515/9783110915501.

[15]

G. A. Sviridyuk and T. G. Sukacheva, On the solvability of a nonstationary problem in the dynamics of an incompressible viscoelastic fluid, Mathematical Notes, 63 (1998), 388-395. doi: 10.1007/BF02317787.

[16]

A. A. Zamyshlyaeva and E. V. Bychkov, Fazovoe prostranstvo modifitsirovannogo uravneniya Bussineska, (Russian) [The phase space of the modified Boussinesq equation] Vestnik of South Ural State University. Ser. Matematicheskoe modelirovanie i programmirovanie, 19, (2012), 13-19.

show all references

References:
[1]

P. N. Davydov and V. E. Fedorov, On Nonlocal Solutions of Semilinear Equations of the Sobolev Type, Differ. Equ., 49 (2013), 326-335. doi: 10.1134/S0012266113030087.

[2]

G. V. Demidenko and S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Marcel Dekker, New York, Basel, 2003. doi: 10.1201/9780203911433.

[3]

A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces, Marcel Dekker, New York, 1999.

[4]

V. E. Fedorov and P. N. Davydov, Polulinejnye vyrozhdennye evolyucionnye uravneniya i nelinejnye sistemy gidrodinamicheskogo tipa, (Russian) [Degenerate semilinear evolution equations and nonlinear systems of hydrodynamic type] Trudy instituta matematiki i mekhaniki UrO RAN, 19 (2013), 267-278.

[5]

V. E. Fedorov and M. V. Plekhanova, Optimal control of Sobolev type linear equations, Differ. Equ., 40 (2004), 1627-1637. doi: 10.1007/s10625-005-0082-9.

[6]

A. I. Kozhanov, Boundary value problems for some classes of higher-order equations that are unsolved with respect to the highest derivative, Siberian Math. J., 35 (1994), 359-376. doi: 10.1007/BF02104779.

[7]

M. V. Plekhanova and V. E. Fedorov, On the existence and uniqueness of solutions of optimal control problems of linear distributed systems which are not solved with respect to the time derivative, Izvestiya: Mathematics, 75 (2011), 395-412. doi: 10.1070/IM2011v075n02ABEH002538.

[8]

M. V. Plekhanova and V. E. Fedorov, Optimal'noe Upravlenie Vyrozddennymi Raspredelennymi Sistemami, (Russian) [Optimal control of degenerate distributed systems], South Ural State University, Chelyabinsk, 2013.

[9]

R. E. Showalter, Nonlinear degenerate evolution equations and partial differential equations of mixed type, SIAM J. Math. Anal., 6 (1975), 25-42. doi: 10.1137/0506004.

[10]

N. A. Sidorov, Ob odnom klasse vyrozhdennyx differencialnyx uravneniy s konvergentsiey, (Russian) [On a class of degenerate differential equations with convergence] Mathematical Notes, 63 (1984), 569-578.

[11]

N. Sidorov, B. Loginov, A. Sinitsyn and M. Falaleev, Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications, Dordrecht, Boston, London, 2002. doi: 10.1007/978-94-017-2122-6.

[12]

A. G. Sveshnikov, A. B. Al'shin, M. O. Korpusov and Yu. D. Pletner, Lineinye I Nelineinye Uravneniya Sobolevskogo Tipa, (Russian) [Linear and Nonlinear Equations of the Sobolev Type], Fizmatlit, Moscow, 2007.

[13]

G. A. Sviridyuk, Polulinejnye uravneniya tipa soboleva s otnositelno ogranichennym operatorom, (Russian) [Semilinear equations of Sobolev type with relatively bounded operator] Doklady AN SSSR, 318 (1991), 828-831.

[14]

G. A. Sviridyuk and V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, Utrecht, Boston, 2003. doi: 10.1515/9783110915501.

[15]

G. A. Sviridyuk and T. G. Sukacheva, On the solvability of a nonstationary problem in the dynamics of an incompressible viscoelastic fluid, Mathematical Notes, 63 (1998), 388-395. doi: 10.1007/BF02317787.

[16]

A. A. Zamyshlyaeva and E. V. Bychkov, Fazovoe prostranstvo modifitsirovannogo uravneniya Bussineska, (Russian) [The phase space of the modified Boussinesq equation] Vestnik of South Ural State University. Ser. Matematicheskoe modelirovanie i programmirovanie, 19, (2012), 13-19.

[1]

Jing Li, Boling Guo, Lan Zeng, Yitong Pei. Global weak solution and smooth solution of the periodic initial value problem for the generalized Landau-Lifshitz-Bloch equation in high dimensions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1345-1360. doi: 10.3934/dcdsb.2019230

[2]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure and Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[3]

Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401

[4]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[5]

Rudong Zheng, Zhaoyang Yin. The Cauchy problem for a generalized Novikov equation. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3503-3519. doi: 10.3934/dcds.2017149

[6]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[7]

Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesq-type equation. Conference Publications, 2013, 2013 (special) : 709-717. doi: 10.3934/proc.2013.2013.709

[8]

Jun Zhou. Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28 (1) : 67-90. doi: 10.3934/era.2020005

[9]

Hui Yang, Yuzhu Han. Initial boundary value problem for a strongly damped wave equation with a general nonlinearity. Evolution Equations and Control Theory, 2022, 11 (3) : 635-648. doi: 10.3934/eect.2021019

[10]

Boling Guo, Jun Wu. Well-posedness of the initial-boundary value problem for the fourth-order nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3749-3778. doi: 10.3934/dcdsb.2021205

[11]

Yu-Feng Sun, Zheng Zeng, Jie Song. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 157-164. doi: 10.3934/naco.2019045

[12]

Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871

[13]

V. Varlamov, Yue Liu. Cauchy problem for the Ostrovsky equation. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 731-753. doi: 10.3934/dcds.2004.10.731

[14]

Adrien Dekkers, Anna Rozanova-Pierrat. Cauchy problem for the Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 277-307. doi: 10.3934/dcds.2019012

[15]

Xu Liu, Jun Zhou. Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. Electronic Research Archive, 2020, 28 (2) : 599-625. doi: 10.3934/era.2020032

[16]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems and Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[17]

Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917

[18]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure and Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[19]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[20]

Martn P. Árciga Alejandre, Elena I. Kaikina. Mixed initial-boundary value problem for Ott-Sudan-Ostrovskiy equation. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 381-409. doi: 10.3934/dcds.2012.32.381

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (144)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]