June  2016, 9(3): 869-893. doi: 10.3934/dcdss.2016033

On nonlinear and quasiliniear elliptic functional differential equations

1. 

Central Economics and Mathematical Institute, Russian Academie of Science, Nakhimovskii pr. 47, Moscow, 117418, Russian Federation

Received  March 2015 Revised  October 2015 Published  April 2016

We consider nonlinear elliptic functional differential equations. The corresponding operator has the form of a product of nonlinear elliptic differential mapping and linear difference mapping. It were obtained sufficient conditions for solvability of the Dirichlet problem. A concrete example shows that a nonlinear differential--difference operator may not be strongly elliptic even if the nonlinear differential operator is strongly elliptic and the linear difference operator is positive definite. The analysis is based on the theory of pseudomonotone--type operators and linear theory of elliptic functional differential operators.
Citation: Olesya V. Solonukha. On nonlinear and quasiliniear elliptic functional differential equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 869-893. doi: 10.3934/dcdss.2016033
References:
[1]

H. Brésis, Équations et inéquations non linéaires dans les espaces vectoriels en dualitè, Ann. Inst. Fourier (Grenoble), 18 (1968), 115-175. doi: 10.5802/aif.280.

[2]

F. E. Browder, Nonlinear elliptic boundary value problems and the generalized topological degree, Bull. Amer. Math. Soc., 76 (1970), 999-1005. doi: 10.1090/S0002-9904-1970-12530-7.

[3]

H. Gajewski, K. Gróger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Mathematische Lehrbücher und Monographien, II. Abteilung, Mathematische Monographien, Band 38, Akademie-Verlag, Berlin, 1974.

[4]

Yu. A. Dubinskii, Nonlinear elliptic and parabolic equations, J. Sov. Math., 12 (1979), 475-554. doi: 10.1007/BF01089137.

[5]

P. Hartman and G. Stampacchia, On some nonlinear elliptic differential functional equations, Acta Math. 115 (1966), 271-310. doi: 10.1007/BF02392210.

[6]

M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, The Macmillan Co., New York, 1964.

[7]

G. I. Laptev, The first boundary problem for second-order quasilinear elliptic equations with double degeneration, Differential Equations, 30 (1994), 1057-1068.

[8]

J.-L. Lions, Quelques Methodes de Resolution de Problemes Aux Limities Non Lineaires, Dunod, Paris, 1969.

[9]

S. I. Pokhozhaev, Solvability of nonlinear equations with odd operators, Funkcional. Anal. i Prilo\v zen, 1 (1967), 66-73.

[10]

A. V. Razgulin, Rotational multi-petal waves in optical systems with 2-D feedback, Chaos in Optics. Proc. SPIE, ed. R.Roy, 2039 (1993), 342-352.

[11]

I. V. Skrypnik, Nonlinear elliptic and parabolic equations, J. Sov. Math., 12 (1979), 555-629.

[12]

A. L. Skubachevskii, The first boundary value problem for strongly elliptic differential-difference equations, J. Differential Equations, 63 (1986), 332-361. doi: 10.1016/0022-0396(86)90060-4.

[13]

A. L. Skubachevskii., Elliptic Functional Differential Equations and Applications, Operator Theory: Advances and Applications, 91, Birkhäuser, Basel-Boston-Berlin, 1997.

[14]

A. L. Skubachevskii, Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics, Nonlinear Anal., 32 (1998), 261-278. doi: 10.1016/S0362-546X(97)00476-8.

[15]

O. V. Solonukha, On a class of essentially nonlinear elliptic differential-difference equations, Proc. of the Steklov Inst. of Math., 283 (2013), 226-244. doi: 10.1134/S0081543813080154.

[16]

M. I. Vishik and O. A. Ladyzhenskaya, Boundary value problem for partial differential equations and certain classes of operator equations, American Mathematical Society Translations, Ser. 2, 10 (1958), 223-281.

show all references

References:
[1]

H. Brésis, Équations et inéquations non linéaires dans les espaces vectoriels en dualitè, Ann. Inst. Fourier (Grenoble), 18 (1968), 115-175. doi: 10.5802/aif.280.

[2]

F. E. Browder, Nonlinear elliptic boundary value problems and the generalized topological degree, Bull. Amer. Math. Soc., 76 (1970), 999-1005. doi: 10.1090/S0002-9904-1970-12530-7.

[3]

H. Gajewski, K. Gróger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Mathematische Lehrbücher und Monographien, II. Abteilung, Mathematische Monographien, Band 38, Akademie-Verlag, Berlin, 1974.

[4]

Yu. A. Dubinskii, Nonlinear elliptic and parabolic equations, J. Sov. Math., 12 (1979), 475-554. doi: 10.1007/BF01089137.

[5]

P. Hartman and G. Stampacchia, On some nonlinear elliptic differential functional equations, Acta Math. 115 (1966), 271-310. doi: 10.1007/BF02392210.

[6]

M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, The Macmillan Co., New York, 1964.

[7]

G. I. Laptev, The first boundary problem for second-order quasilinear elliptic equations with double degeneration, Differential Equations, 30 (1994), 1057-1068.

[8]

J.-L. Lions, Quelques Methodes de Resolution de Problemes Aux Limities Non Lineaires, Dunod, Paris, 1969.

[9]

S. I. Pokhozhaev, Solvability of nonlinear equations with odd operators, Funkcional. Anal. i Prilo\v zen, 1 (1967), 66-73.

[10]

A. V. Razgulin, Rotational multi-petal waves in optical systems with 2-D feedback, Chaos in Optics. Proc. SPIE, ed. R.Roy, 2039 (1993), 342-352.

[11]

I. V. Skrypnik, Nonlinear elliptic and parabolic equations, J. Sov. Math., 12 (1979), 555-629.

[12]

A. L. Skubachevskii, The first boundary value problem for strongly elliptic differential-difference equations, J. Differential Equations, 63 (1986), 332-361. doi: 10.1016/0022-0396(86)90060-4.

[13]

A. L. Skubachevskii., Elliptic Functional Differential Equations and Applications, Operator Theory: Advances and Applications, 91, Birkhäuser, Basel-Boston-Berlin, 1997.

[14]

A. L. Skubachevskii, Bifurcation of periodic solutions for nonlinear parabolic functional differential equations arising in optoelectronics, Nonlinear Anal., 32 (1998), 261-278. doi: 10.1016/S0362-546X(97)00476-8.

[15]

O. V. Solonukha, On a class of essentially nonlinear elliptic differential-difference equations, Proc. of the Steklov Inst. of Math., 283 (2013), 226-244. doi: 10.1134/S0081543813080154.

[16]

M. I. Vishik and O. A. Ladyzhenskaya, Boundary value problem for partial differential equations and certain classes of operator equations, American Mathematical Society Translations, Ser. 2, 10 (1958), 223-281.

[1]

Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4421-4460. doi: 10.3934/dcds.2021042

[2]

Chong Wang, Gang Wang, Lixia Liu. Sharp bounds on the minimum $M$-eigenvalue and strong ellipticity condition of elasticity $Z$-tensors-tensors. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021205

[3]

Fabrizio Colombo, Davide Guidetti. Identification of the memory kernel in the strongly damped wave equation by a flux condition. Communications on Pure and Applied Analysis, 2009, 8 (2) : 601-620. doi: 10.3934/cpaa.2009.8.601

[4]

Peter I. Kogut, Olha P. Kupenko. On optimal control problem for an ill-posed strongly nonlinear elliptic equation with $p$-Laplace operator and $L^1$-type of nonlinearity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1273-1295. doi: 10.3934/dcdsb.2019016

[5]

Laura Gambera, Umberto Guarnotta. Strongly singular convective elliptic equations in $ \mathbb{R}^N $ driven by a non-homogeneous operator. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022088

[6]

Dorina Mitrea, Marius Mitrea, Sylvie Monniaux. The Poisson problem for the exterior derivative operator with Dirichlet boundary condition in nonsmooth domains. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1295-1333. doi: 10.3934/cpaa.2008.7.1295

[7]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[8]

Karim Boulabiar, Gerard Buskes and Gleb Sirotkin. A strongly diagonal power of algebraic order bounded disjointness preserving operators. Electronic Research Announcements, 2003, 9: 94-98.

[9]

Heinz-Jürgen Flad, Gohar Harutyunyan. Ellipticity of quantum mechanical Hamiltonians in the edge algebra. Conference Publications, 2011, 2011 (Special) : 420-429. doi: 10.3934/proc.2011.2011.420

[10]

Ait Ben Hassi El Mustapha, Fadili Mohamed, Maniar Lahcen. On Algebraic condition for null controllability of some coupled degenerate systems. Mathematical Control and Related Fields, 2019, 9 (1) : 77-95. doi: 10.3934/mcrf.2019004

[11]

Ryutaroh Matsumoto. Strongly secure quantum ramp secret sharing constructed from algebraic curves over finite fields. Advances in Mathematics of Communications, 2019, 13 (1) : 1-10. doi: 10.3934/amc.2019001

[12]

Bernard Dacorogna. Necessary and sufficient conditions for strong ellipticity of isotropic functions in any dimension. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 257-263. doi: 10.3934/dcdsb.2001.1.257

[13]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1347-1361. doi: 10.3934/cpaa.2021023

[14]

Craig Cowan. Supercritical elliptic problems involving a Cordes like operator. Discrete and Continuous Dynamical Systems, 2021, 41 (9) : 4297-4318. doi: 10.3934/dcds.2021037

[15]

Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems and Imaging, 2021, 15 (4) : 599-618. doi: 10.3934/ipi.2021006

[16]

Dung Le. On the regular set of BMO weak solutions to $p$-Laplacian strongly coupled nonregular elliptic systems. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3245-3265. doi: 10.3934/dcdsb.2014.19.3245

[17]

Xianjin Chen, Jianxin Zhou. A local min-orthogonal method for multiple solutions of strongly coupled elliptic systems. Conference Publications, 2009, 2009 (Special) : 151-160. doi: 10.3934/proc.2009.2009.151

[18]

Salvatore Rionero. On the nonlinear stability of ternary porous media via only one necessary and sufficient algebraic condition. Evolution Equations and Control Theory, 2014, 3 (3) : 525-539. doi: 10.3934/eect.2014.3.525

[19]

Phuong Le. Liouville theorems for stable weak solutions of elliptic problems involving Grushin operator. Communications on Pure and Applied Analysis, 2020, 19 (1) : 511-525. doi: 10.3934/cpaa.2020025

[20]

Huyuan Chen, Feng Zhou. Isolated singularities for elliptic equations with hardy operator and source nonlinearity. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 2945-2964. doi: 10.3934/dcds.2018126

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (140)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]