August  2016, 9(4): 895-922. doi: 10.3934/dcdss.2016034

Blue sky-like catastrophe for reversible nonlinear implicit ODEs

1. 

Department of Industrial Engeneering and Mathematics, Marche Polytecnic University, Ancona, Italy

2. 

Department of Mathematical Analysis and Numerical Mathematics, Comenius University, Mlynská dolina, 842 48 Bratislava

Received  March 2015 Revised  June 2015 Published  August 2016

We study for reversible implicit differential equations the bifurcation of bounded solutions connecting singularities in finite time and their approximation by shadowed periodic solutions. Melnikov like condition is derived. Application is given to planar nonlinear RLC system.
Citation: Flaviano Battelli, Michal Fečkan. Blue sky-like catastrophe for reversible nonlinear implicit ODEs. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 895-922. doi: 10.3934/dcdss.2016034
References:
[1]

F. Battelli and M. Fečkan, Melnikov theory for nonlinear implicit ODEs,, J. Differential Equations, 256 (2014), 1157.  doi: 10.1016/j.jde.2013.10.012.  Google Scholar

[2]

________, Nonlinear RLC circuits and implicit ODEs,, Differential Integral Equations, 27 (2014), 671.   Google Scholar

[3]

________, Melnikov theory for weakly coupled nonlinear RLC circuits},, Bound. Value Probl., 2014 (2014).  doi: 10.1186/1687-2770-2014-101.  Google Scholar

[4]

A. W. Coppel, Dichotomies in Stability Theory,, Lecture Notes in Math., 629 (1978).   Google Scholar

[5]

R. Devaney, Blue sky catastrophes in reversible and Hamiltonian systems,, Indiana Univ. Math. J., 26 (1977), 247.  doi: 10.1512/iumj.1977.26.26018.  Google Scholar

[6]

M. C. Irwin, On the smoothness of the composition map,, Quart. J. Math. Oxford Ser. (2), 23 (1971), 113.  doi: 10.1093/qmath/23.2.113.  Google Scholar

[7]

E. Kreyszig, Introductory Functional Analysis with Applications,, John Wiley & Sons, (1989).   Google Scholar

[8]

X. B. Lin, Using Melnikov's method to solve Shilnikov's problems,, Proc. Royal Soc. Edinburgh A, 116 (1990), 295.  doi: 10.1017/S0308210500031528.  Google Scholar

[9]

K. J. Palmer, Transversal heteroclinic points and Cherry's example of a nonintegrable Hamiltonian system,, J. Differential Equations, 65 (1986), 321.  doi: 10.1016/0022-0396(86)90023-9.  Google Scholar

[10]

P. J. Rabier and W. C. Rheinboldt, A general existence and uniqueness theorem for implicit differential algebraic equations,, Differential Integral Equations, 4 (1991), 563.   Google Scholar

[11]

________, A geometric treatment of implicit differential-algebraic equations,, J. Differential Equations, 109 (1994), 110.  doi: 10.1006/jdeq.1994.1046.  Google Scholar

[12]

________, On impasse points of quasilinear differential algebraic equations,, J. Math. Anal. Appl., 181 (1994), 429.  doi: 10.1006/jmaa.1994.1033.  Google Scholar

[13]

________, On the computation of impasse points of quasilinear differential algebraic equations,, Math. Comp., 62 (1994), 133.  doi: 10.2307/2153400.  Google Scholar

[14]

R. Riaza, Differential-Algebraic Systems, Analytical Aspects and Circuit Applications,, World Sci. Publ. Co. Pte. Ltd., (2008).   Google Scholar

[15]

A. Vanderbauwhede, Heteroclinic cycles and periodic orbits in reversible systems,, in Ordinary and Delay Differential Equations, 272 (1992), 250.   Google Scholar

[16]

A. Vanderbauwhede and B. Fiedler, Homoclinic period blow-up in reversible and conservative systems,, Z. Angew. Math. Phys. (ZAMP), 43 (1992), 292.  doi: 10.1007/BF00946632.  Google Scholar

show all references

References:
[1]

F. Battelli and M. Fečkan, Melnikov theory for nonlinear implicit ODEs,, J. Differential Equations, 256 (2014), 1157.  doi: 10.1016/j.jde.2013.10.012.  Google Scholar

[2]

________, Nonlinear RLC circuits and implicit ODEs,, Differential Integral Equations, 27 (2014), 671.   Google Scholar

[3]

________, Melnikov theory for weakly coupled nonlinear RLC circuits},, Bound. Value Probl., 2014 (2014).  doi: 10.1186/1687-2770-2014-101.  Google Scholar

[4]

A. W. Coppel, Dichotomies in Stability Theory,, Lecture Notes in Math., 629 (1978).   Google Scholar

[5]

R. Devaney, Blue sky catastrophes in reversible and Hamiltonian systems,, Indiana Univ. Math. J., 26 (1977), 247.  doi: 10.1512/iumj.1977.26.26018.  Google Scholar

[6]

M. C. Irwin, On the smoothness of the composition map,, Quart. J. Math. Oxford Ser. (2), 23 (1971), 113.  doi: 10.1093/qmath/23.2.113.  Google Scholar

[7]

E. Kreyszig, Introductory Functional Analysis with Applications,, John Wiley & Sons, (1989).   Google Scholar

[8]

X. B. Lin, Using Melnikov's method to solve Shilnikov's problems,, Proc. Royal Soc. Edinburgh A, 116 (1990), 295.  doi: 10.1017/S0308210500031528.  Google Scholar

[9]

K. J. Palmer, Transversal heteroclinic points and Cherry's example of a nonintegrable Hamiltonian system,, J. Differential Equations, 65 (1986), 321.  doi: 10.1016/0022-0396(86)90023-9.  Google Scholar

[10]

P. J. Rabier and W. C. Rheinboldt, A general existence and uniqueness theorem for implicit differential algebraic equations,, Differential Integral Equations, 4 (1991), 563.   Google Scholar

[11]

________, A geometric treatment of implicit differential-algebraic equations,, J. Differential Equations, 109 (1994), 110.  doi: 10.1006/jdeq.1994.1046.  Google Scholar

[12]

________, On impasse points of quasilinear differential algebraic equations,, J. Math. Anal. Appl., 181 (1994), 429.  doi: 10.1006/jmaa.1994.1033.  Google Scholar

[13]

________, On the computation of impasse points of quasilinear differential algebraic equations,, Math. Comp., 62 (1994), 133.  doi: 10.2307/2153400.  Google Scholar

[14]

R. Riaza, Differential-Algebraic Systems, Analytical Aspects and Circuit Applications,, World Sci. Publ. Co. Pte. Ltd., (2008).   Google Scholar

[15]

A. Vanderbauwhede, Heteroclinic cycles and periodic orbits in reversible systems,, in Ordinary and Delay Differential Equations, 272 (1992), 250.   Google Scholar

[16]

A. Vanderbauwhede and B. Fiedler, Homoclinic period blow-up in reversible and conservative systems,, Z. Angew. Math. Phys. (ZAMP), 43 (1992), 292.  doi: 10.1007/BF00946632.  Google Scholar

[1]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[2]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[3]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[4]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[5]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[6]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[7]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[8]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[9]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[10]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[11]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[12]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (46)
  • HTML views (1)
  • Cited by (1)

Other articles
by authors

[Back to Top]