Citation: |
[1] |
L. Ya. Adrianova, Introduction to Linear Systems of Differential Equations, Translations of Mathematical Monographs, 146. American Mathematical Society, Providence, RI, 1995. |
[2] |
W. Ambrose, Representation of ergodic flows, Annals of Mathematics, 42 (1941), 723-739.doi: 10.2307/1969259. |
[3] |
A. Arbieto and J. Bochi, $L^p$-generic cocycles have one-point Lyapunov spectrum, Stoch. Dynam., 3 (2003), 73-81. (Corrigendum Stoch. Dynam. 3 (2003), 419-420.)doi: 10.1142/S0219493703000619. |
[4] |
L. Arnold, Random Dynamical Systems, Springer, 1998.doi: 10.1007/978-3-662-12878-7. |
[5] |
L. Arnold and N. D. Cong, Linear cocycles with simple Lyapunov spectrum are dense in $L^{\infty}$, Ergodic Theory Dynam. Systems, 19 (1999), 1389-1404.doi: 10.1017/S014338579915199X. |
[6] |
A. Avila, J. Bochi and D. Damanik, Cantor spectrum for Schrödinger operators with potentials arising from generalized skew-shifts, Duke Math. J., 146 (2009), 253-280.doi: 10.1215/00127094-2008-065. |
[7] |
M. Bessa, Dynamics of generic $2$-dimensional linear differential systems, J. Diff. Equations, 228 (2006), 685-706.doi: 10.1016/j.jde.2006.03.009. |
[8] |
M. Bessa, Dynamic of generic multidimensional linear differenatil systems, Adv. Nonlinear Stud., 8 (2008), 191-211. |
[9] |
M. Bessa and H. Vilarinho, Fine properties of $L^p$-cocycles which allow abundance of simple and trivial spectrum, J. Diff. Equations, 256 (2014), 2337-2367.doi: 10.1016/j.jde.2014.01.003. |
[10] |
J. Bochi and M. Viana, The Lyapunov exponents of generic volume preserving and sympletic systems, Ann. Math., 161 (2005), 1423-1485.doi: 10.4007/annals.2005.161.1423. |
[11] |
N. D. Cong, A generic bounded linear cocycle has simple Lyapunov spectrum, Ergodic Theory Dynam. Systems, 25 (2005), 1775-1797.doi: 10.1017/S0143385705000337. |
[12] |
N. D. Cong and T. S. Doan, An open set of unbounded cocycles with simple Lyapunov spectrum and no exponential separation, Stoch. Dyn., 7 (2007), 335-355.doi: 10.1142/S0219493707002062. |
[13] |
I. P. Cornfeld, S. V. Fomin and Ya. G. Sinaĭ, Ergodic Theory, Grundlehren der Mathematischen Wissenschaften, 245. Springer-Verlag, New York, 1982.doi: 10.1007/978-1-4615-6927-5. |
[14] |
R. Fabbri and R. Johnson, On the Lyapounov exponent of certain $\mbox{SL}(2,\mathbbR)$-valued cocycles, Differential Equations Dynam. Systems, 7 (1999), 349-370. |
[15] |
R. Fabbri and R. Johnson, Genericity of exponential dichotomy for two-dimensional differential systems, Ann. Mat. Pura Appl., 178 (2000), 175-193.doi: 10.1007/BF02505894. |
[16] |
R. Fabbri, R. Johnson and R. Pavani, On the nature of the spectrum of the quasi-periodic Schrödinger operator, Nonlinear Anal. Real World Appl., 3 (2002), 37-59.doi: 10.1016/S1468-1218(01)00012-8. |
[17] |
R. Fabbri, R. Johnson and L. Zampogni, On the Lyapunov exponent of certain $\mbox{SL}(2,\mathbbR)$-valued cocycles II, Differ. Equ. Dyn. Syst., 18 (2010), 135-161.doi: 10.1007/s12591-010-0003-0. |
[18] |
T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1976. |
[19] |
P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176. American Mathematical Society, Providence, RI, 2011.doi: 10.1090/surv/176. |
[20] |
V. M. Millionshchikov, Systems with integral separateness which are dense in the set of all linear systems of differential equations, Diff. Equations, 5 (1969), 1167-1170. |
[21] |
K. J. Palmer, Exponential separation, exponential dichotomy and spectral theory for linear systems of ordinary differential equations, J. Diff. Equations, 46 (1982), 324-345.doi: 10.1016/0022-0396(82)90098-5. |
[22] |
R. J. Sacker and G. R. Sell, A spectral theory for linear differential equations, J. Diff. Equations, 27 (1978), 320-358.doi: 10.1016/0022-0396(78)90057-8. |
[23] |
S. Siegmund, Dichotomy spectrum for nonautonomous differential equations, J. Dynam. Differential Equations, 14 (2002), 243-258.doi: 10.1023/A:1012919512399. |