August  2016, 9(4): 1039-1068. doi: 10.3934/dcdss.2016041

Piecewise smooth systems near a co-dimension 2 discontinuity manifold: Can one say what should happen?

1. 

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, United States

2. 

Dipartimento di Matematica, University of Bari, I-70125, Bari, Italy

Received  August 2015 Revised  March 2016 Published  August 2016

In this work we attempt to understand what behavior one should expect of a solution trajectory near $\Sigma$ when $\Sigma$ is attractive, what to expect when $\Sigma$ ceases to be attractive (at generic exit points), and finally we also contrast and compare the behavior of some regularizations proposed in the literature, whereby the piecewise smooth system is replaced by a smooth differential system.
    Through analysis and experiments in $\mathbb{R}^3$ and $\mathbb{R}^4$, we will confirm some known facts and provide some important insight: (i) when $\Sigma$ is attractive, a solution trajectory remains near $\Sigma$, viz. sliding on $\Sigma$ is an appropriate idealization (though one cannot a priori decide which sliding vector field should be selected); (ii) when $\Sigma$ loses attractivity (at first order exit conditions), a typical solution trajectory leaves a neighborhood of $\Sigma$; (iii) there is no obvious way to regularize the system so that the regularized trajectory will remain near $\Sigma$ while $\Sigma$ is attractive, and so that it will be leaving (a neighborhood of) $\Sigma$ when $\Sigma$ looses attractivity.
    We reach the above conclusions by considering exclusively the given piecewise smooth system, without superimposing any assumption on what kind of dynamics near $\Sigma$ should have been taking place.
Citation: Luca Dieci, Cinzia Elia. Piecewise smooth systems near a co-dimension 2 discontinuity manifold: Can one say what should happen?. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1039-1068. doi: 10.3934/dcdss.2016041
References:
[1]

J. C. Alexander and T. Seidman, Sliding modes in intersecting switching surfaces, I: Blending., Houston J. Math., 24 (1998), 545.   Google Scholar

[2]

J. C. Alexander and T. Seidman, Sliding modes in intersecting switching surfaces, II: Hysteresis., Houston J. Math., 25 (1999), 185.   Google Scholar

[3]

Z. Artstein, On singularly perturbed ordinary differential equations with measure-valued limits,, Mathematics Bohemica, 127 (2002), 139.   Google Scholar

[4]

J. Cortes, Discontinuous Dynamical Systems: A tutorial on solutions, nonsmooth analysis, and stability,, IEEE Control Systems Magazine, 28 (2008), 36.  doi: 10.1109/MCS.2008.919306.  Google Scholar

[5]

N. Del Buono, C. Elia and L. Lopez, On the equivalence between the sigmoidal approach and Utkin's approach for models of gene regulatory networks,, SIAM J. Applied Dynamical Systems, 13 (2014), 1270.  doi: 10.1137/130950483.  Google Scholar

[6]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems. Theory and Applications., Applied Mathematical Sciences 163. Springer-Verlag, (2008).   Google Scholar

[7]

L. Dieci, Sliding motion on the intersection of two manifolds: Spirally attractive case,, Communications in Nonlinear Science and Numerical Simulation, 26 (2015), 65.  doi: 10.1016/j.cnsns.2015.02.002.  Google Scholar

[8]

L. Dieci and F. Difonzo, A Comparison of Filippov sliding vector fields in co-dimension $2$,, Journal of Computational and Applied Mathematics, 262 (2014), 161.  doi: 10.1016/j.cam.2013.10.055.  Google Scholar

[9]

L. Dieci and F. Difonzo, The Moments sliding vector field on the intersection of two manifolds,, Journal of Dynamics and Differential Equations, (2015), 1.  doi: 10.1007/s10884-015-9439-9.  Google Scholar

[10]

L. Dieci, C. Elia and L. Lopez, A Filippov sliding vector field on an attracting co-dimension 2 discontinuity surface, and a limited loss-of-attractivity analysis,, J. Differential Equations, 254 (2013), 1800.  doi: 10.1016/j.jde.2012.11.007.  Google Scholar

[11]

L. Dieci, C. Elia and L. Lopez, Sharp sufficient attractivity conditions for sliding on a co-dimension 2 discontinuity surface,, Mathematics and Computers in Simulations, 110 (2015), 3.  doi: 10.1016/j.matcom.2013.12.005.  Google Scholar

[12]

L. Dieci, C. Elia and L. Lopez, Uniqueness of Filippov sliding vector field on the intersection of two surfaces in $\mathbbR^3$ and implications for stability of periodic orbits,, J. Nonlin. Science, 25 (2015), 1453.  doi: 10.1007/s00332-015-9265-6.  Google Scholar

[13]

L. Dieci and N. Guglielmi, Regularizing piecewise smooth differential systems: Co-dimension 2 discontinuity surface,, J. Dynamics and Differential Equations, 25 (2013), 71.  doi: 10.1007/s10884-013-9287-4.  Google Scholar

[14]

A. Dontchev and F. Lempio, Difference methods for differential inclusions: A survey,, SIAM REVIEW, 34 (1992), 263.  doi: 10.1137/1034050.  Google Scholar

[15]

A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides,, Mathematics and Its Applications, (1988).  doi: 10.1007/978-94-015-7793-9.  Google Scholar

[16]

N. Guglielmi and E. Hairer, Classification of hidden dynamics in discontinuous dynamical systems,, SIADS, 14 (2015), 1454.  doi: 10.1137/15100326X.  Google Scholar

[17]

M. Jeffrey, Dynamics at a switching intersection: Hierarchy, isonomy, and multiple sliding,, SIAM J. Applied Dyn. Systems, 13 (2014), 1082.  doi: 10.1137/13093368X.  Google Scholar

[18]

J. Llibre, P. R. Silva and M. A. Teixeira, Regularization of discontinuous vector fields on $\mathbbR^3$ via singular perturbation,, J. Dynam. Differential Equations, 19 (2007), 309.  doi: 10.1007/s10884-006-9057-7.  Google Scholar

[19]

A. Machina, R. Edwards and P. van den Driessche, Singular dynamics in gene network models,, SIAM J. Appl. Dyn. Syst., 12 (2013), 95.  doi: 10.1137/120872747.  Google Scholar

[20]

E. Plahte and S. Kjóglum, Analysis and generic properties of gene regulatory networks with graded response functions,, Physica D, 201 (2005), 150.  doi: 10.1016/j.physd.2004.11.014.  Google Scholar

[21]

A. Polynikis, S. J. Hogan and M. di Bernardo, Comparing different ODE modelling approaches for gene regulatory networks,, Journal of Theoretical Biology, 261 (2009), 511.  doi: 10.1016/j.jtbi.2009.07.040.  Google Scholar

[22]

T. Seidman, Some limit results for relays,, Proc.s of World Congress of Nonlinear Analysts, 1 (1996), 787.   Google Scholar

[23]

T. Seidman, The residue of model reduction. The residue of model reduction,, In Hybrid Systems III. Verification and Control, (1996), 201.   Google Scholar

[24]

J. Sotomayor and M. A. Teixeira, Regularization of discontinuous vector field,, In International Conference on Differential Equations, (1998), 207.   Google Scholar

[25]

V. I. Utkin, Sliding Modes and Their Application in Variable Structure Systems., MIR Publisher, (1978).   Google Scholar

[26]

V. I. Utkin, Sliding Mode in Control and Optimization,, Springer, (1992).  doi: 10.1007/978-3-642-84379-2.  Google Scholar

show all references

References:
[1]

J. C. Alexander and T. Seidman, Sliding modes in intersecting switching surfaces, I: Blending., Houston J. Math., 24 (1998), 545.   Google Scholar

[2]

J. C. Alexander and T. Seidman, Sliding modes in intersecting switching surfaces, II: Hysteresis., Houston J. Math., 25 (1999), 185.   Google Scholar

[3]

Z. Artstein, On singularly perturbed ordinary differential equations with measure-valued limits,, Mathematics Bohemica, 127 (2002), 139.   Google Scholar

[4]

J. Cortes, Discontinuous Dynamical Systems: A tutorial on solutions, nonsmooth analysis, and stability,, IEEE Control Systems Magazine, 28 (2008), 36.  doi: 10.1109/MCS.2008.919306.  Google Scholar

[5]

N. Del Buono, C. Elia and L. Lopez, On the equivalence between the sigmoidal approach and Utkin's approach for models of gene regulatory networks,, SIAM J. Applied Dynamical Systems, 13 (2014), 1270.  doi: 10.1137/130950483.  Google Scholar

[6]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems. Theory and Applications., Applied Mathematical Sciences 163. Springer-Verlag, (2008).   Google Scholar

[7]

L. Dieci, Sliding motion on the intersection of two manifolds: Spirally attractive case,, Communications in Nonlinear Science and Numerical Simulation, 26 (2015), 65.  doi: 10.1016/j.cnsns.2015.02.002.  Google Scholar

[8]

L. Dieci and F. Difonzo, A Comparison of Filippov sliding vector fields in co-dimension $2$,, Journal of Computational and Applied Mathematics, 262 (2014), 161.  doi: 10.1016/j.cam.2013.10.055.  Google Scholar

[9]

L. Dieci and F. Difonzo, The Moments sliding vector field on the intersection of two manifolds,, Journal of Dynamics and Differential Equations, (2015), 1.  doi: 10.1007/s10884-015-9439-9.  Google Scholar

[10]

L. Dieci, C. Elia and L. Lopez, A Filippov sliding vector field on an attracting co-dimension 2 discontinuity surface, and a limited loss-of-attractivity analysis,, J. Differential Equations, 254 (2013), 1800.  doi: 10.1016/j.jde.2012.11.007.  Google Scholar

[11]

L. Dieci, C. Elia and L. Lopez, Sharp sufficient attractivity conditions for sliding on a co-dimension 2 discontinuity surface,, Mathematics and Computers in Simulations, 110 (2015), 3.  doi: 10.1016/j.matcom.2013.12.005.  Google Scholar

[12]

L. Dieci, C. Elia and L. Lopez, Uniqueness of Filippov sliding vector field on the intersection of two surfaces in $\mathbbR^3$ and implications for stability of periodic orbits,, J. Nonlin. Science, 25 (2015), 1453.  doi: 10.1007/s00332-015-9265-6.  Google Scholar

[13]

L. Dieci and N. Guglielmi, Regularizing piecewise smooth differential systems: Co-dimension 2 discontinuity surface,, J. Dynamics and Differential Equations, 25 (2013), 71.  doi: 10.1007/s10884-013-9287-4.  Google Scholar

[14]

A. Dontchev and F. Lempio, Difference methods for differential inclusions: A survey,, SIAM REVIEW, 34 (1992), 263.  doi: 10.1137/1034050.  Google Scholar

[15]

A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides,, Mathematics and Its Applications, (1988).  doi: 10.1007/978-94-015-7793-9.  Google Scholar

[16]

N. Guglielmi and E. Hairer, Classification of hidden dynamics in discontinuous dynamical systems,, SIADS, 14 (2015), 1454.  doi: 10.1137/15100326X.  Google Scholar

[17]

M. Jeffrey, Dynamics at a switching intersection: Hierarchy, isonomy, and multiple sliding,, SIAM J. Applied Dyn. Systems, 13 (2014), 1082.  doi: 10.1137/13093368X.  Google Scholar

[18]

J. Llibre, P. R. Silva and M. A. Teixeira, Regularization of discontinuous vector fields on $\mathbbR^3$ via singular perturbation,, J. Dynam. Differential Equations, 19 (2007), 309.  doi: 10.1007/s10884-006-9057-7.  Google Scholar

[19]

A. Machina, R. Edwards and P. van den Driessche, Singular dynamics in gene network models,, SIAM J. Appl. Dyn. Syst., 12 (2013), 95.  doi: 10.1137/120872747.  Google Scholar

[20]

E. Plahte and S. Kjóglum, Analysis and generic properties of gene regulatory networks with graded response functions,, Physica D, 201 (2005), 150.  doi: 10.1016/j.physd.2004.11.014.  Google Scholar

[21]

A. Polynikis, S. J. Hogan and M. di Bernardo, Comparing different ODE modelling approaches for gene regulatory networks,, Journal of Theoretical Biology, 261 (2009), 511.  doi: 10.1016/j.jtbi.2009.07.040.  Google Scholar

[22]

T. Seidman, Some limit results for relays,, Proc.s of World Congress of Nonlinear Analysts, 1 (1996), 787.   Google Scholar

[23]

T. Seidman, The residue of model reduction. The residue of model reduction,, In Hybrid Systems III. Verification and Control, (1996), 201.   Google Scholar

[24]

J. Sotomayor and M. A. Teixeira, Regularization of discontinuous vector field,, In International Conference on Differential Equations, (1998), 207.   Google Scholar

[25]

V. I. Utkin, Sliding Modes and Their Application in Variable Structure Systems., MIR Publisher, (1978).   Google Scholar

[26]

V. I. Utkin, Sliding Mode in Control and Optimization,, Springer, (1992).  doi: 10.1007/978-3-642-84379-2.  Google Scholar

[1]

Dingheng Pi. Limit cycles for regularized piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 881-905. doi: 10.3934/dcdsb.2018211

[2]

Todd Young. Partially hyperbolic sets from a co-dimension one bifurcation. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 253-275. doi: 10.3934/dcds.1995.1.253

[3]

Sihong Shao, Huazhong Tang. Higher-order accurate Runge-Kutta discontinuous Galerkin methods for a nonlinear Dirac model. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 623-640. doi: 10.3934/dcdsb.2006.6.623

[4]

Alan Mackey, Theodore Kolokolnikov, Andrea L. Bertozzi. Two-species particle aggregation and stability of co-dimension one solutions. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1411-1436. doi: 10.3934/dcdsb.2014.19.1411

[5]

Carles Bonet-Revés, Tere M-Seara. Regularization of sliding global bifurcations derived from the local fold singularity of Filippov systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3545-3601. doi: 10.3934/dcds.2016.36.3545

[6]

Antonia Katzouraki, Tania Stathaki. Intelligent traffic control on internet-like topologies - integration of graph principles to the classic Runge--Kutta method. Conference Publications, 2009, 2009 (Special) : 404-415. doi: 10.3934/proc.2009.2009.404

[7]

Da Xu. Numerical solutions of viscoelastic bending wave equations with two term time kernels by Runge-Kutta convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2389-2416. doi: 10.3934/dcdsb.2017122

[8]

Wenjuan Zhai, Bingzhen Chen. A fourth order implicit symmetric and symplectic exponentially fitted Runge-Kutta-Nyström method for solving oscillatory problems. Numerical Algebra, Control & Optimization, 2019, 9 (1) : 71-84. doi: 10.3934/naco.2019006

[9]

Yanli Han, Yan Gao. Determining the viability for hybrid control systems on a region with piecewise smooth boundary. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 1-9. doi: 10.3934/naco.2015.5.1

[10]

Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123

[11]

D. J. W. Simpson, R. Kuske. Stochastically perturbed sliding motion in piecewise-smooth systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2889-2913. doi: 10.3934/dcdsb.2014.19.2889

[12]

Kazuyuki Yagasaki. Application of the subharmonic Melnikov method to piecewise-smooth systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2189-2209. doi: 10.3934/dcds.2013.33.2189

[13]

N. Chernov. Statistical properties of piecewise smooth hyperbolic systems in high dimensions. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 425-448. doi: 10.3934/dcds.1999.5.425

[14]

Hebai Chen, Jaume Llibre, Yilei Tang. Centers of discontinuous piecewise smooth quasi–homogeneous polynomial differential systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6495-6509. doi: 10.3934/dcdsb.2019150

[15]

Shanshan Liu, Maoan Han. Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020133

[16]

Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873

[17]

Lijun Wei, Xiang Zhang. Limit cycle bifurcations near generalized homoclinic loop in piecewise smooth differential systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2803-2825. doi: 10.3934/dcds.2016.36.2803

[18]

Yilei Tang. Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2029-2046. doi: 10.3934/dcds.2018082

[19]

Yurong Li, Zhengdong Du. Applying battelli-fečkan's method to transversal heteroclinic bifurcation in piecewise smooth systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6025-6052. doi: 10.3934/dcdsb.2019119

[20]

Viviane Baladi, Daniel Smania. Smooth deformations of piecewise expanding unimodal maps. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 685-703. doi: 10.3934/dcds.2009.23.685

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]