August  2016, 9(4): 1119-1148. doi: 10.3934/dcdss.2016045

On the nonautonomous Hopf bifurcation problem

1. 

Università Politecnica delle Marche, Dipartimento di Ingegneria Industriale e Scienze Matematiche, Via Brecce Bianche, I-60131 Ancona, Italy

2. 

Dipartimento di Sistemi e Informatica, Università di Firenze, Facolta' di Ingegneria, Via di Santa Marta 3, 50139 Firenze

3. 

Universidad de Valladolid, Departamento de Matemática Aplicada, Esecuela de Ingegnerías Industriales, Paseo del Cauce 59, 47011 Valladolid, Spain

Received  July 2015 Revised  December 2015 Published  August 2016

Under well-known conditions, a one-parameter family of two-dimensional, autonomous ordinary differential equations admits a supercritical\break Andronov-Hopf bifurcation. Let such a family be perturbed by a non-autonomous term. We analyze the sense in which and some conditions under which the Andronov-Hopf pattern persists under such a perturbation.
Citation: Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045
References:
[1]

J. Aliste-Prieto and T. Jäger, Almost periodic structures and the semi-conjugacy problem,, J. Differential Equations, 252 (2012), 4988.  doi: 10.1016/j.jde.2012.01.030.  Google Scholar

[2]

V. Anagnostopoulou, T. Jäger and G. Keller, A model for the non-autonomous Hopf bifurcation,, preprint, ().   Google Scholar

[3]

L. Arnold, Random Dynamical Systems,, in Dynamical Systems, 1609 (1995), 1.  doi: 10.1007/BFb0095238.  Google Scholar

[4]

M. Bebutov, On dynamical systems in the space of continuous functions,, Bull. Moscow Univ. Matematica, (1941), 1.   Google Scholar

[5]

K. Bjerkäv and R. Johnson, Minimal subsets of projective flows,, Discrete Contin. Dyn. Syst., 9 (2008), 493.  doi: 10.3934/dcdsb.2008.9.493.  Google Scholar

[6]

R. Botts, A. Homburg and T. Young, The Hopf bifurcation with bounded noise,, Discrete Contin. Dyn. Syst., 32 (2012), 2997.  doi: 10.3934/dcds.2012.32.2997.  Google Scholar

[7]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[8]

B. Braaksma and H. Broer, On a quasi-periodic Hopf bifurcation,, Ann. Inst. H. Poincare Anal. Non Lineaire, 4 (1987), 115.   Google Scholar

[9]

B. Braaksma, H. Broer and G. Huitema, Toward a quasi-periodic bifurcation theory,, Memoirs A.M.S., 83 (1990), 83.   Google Scholar

[10]

H. Broer, G. Huitema and M. Sevryuk, Quasi-periodic Motions in Families of Dynamical Systems. Order Amidst Chaos,, Lecture Notes in Mathematics, (1645).   Google Scholar

[11]

H. Broer, KAM-theory: Multiperiodicity in conservative and dissipative systems,, Nieuw Archief v. Wiskunde, 14 (1996), 65.   Google Scholar

[12]

L. Chierchia and C. Falcolini, Compensations in small divisors problems,, Comm. Math. Phys., 175 (1996), 135.  doi: 10.1007/BF02101627.  Google Scholar

[13]

E. Coddington and N. Levinson, Theory of Ordinary Differential Equations,, Mc Graw Hill, (1955).   Google Scholar

[14]

W. Coppel, Dichotomies in Stability Theory,, Lecture Notes in Mathematics 377, 377 (1978).   Google Scholar

[15]

S. Diliberto, Perturbation theorems for periodic surfaces I,, Rend. Circ. Math. Palermo, 9 (1960), 265.  doi: 10.1007/BF02851248.  Google Scholar

[16]

S. Diliberto, New results in periodic surfaces and the averaging principle,, U.S.-Japanese seminar on Differential Equations, (1967), 49.   Google Scholar

[17]

R. Ellis, Lectures on Topological Dynamics,, W.A. Benjamin Co., (1969).   Google Scholar

[18]

B. Fayad, Weak mixing for reparametrized linear flows on the torus,, Ergodic Theory Dynam. Systems, 22 (2002), 187.  doi: 10.1017/S0143385702000081.  Google Scholar

[19]

B. Fayad, Analytic mixing reparametrizations of irrational flows,, Ergodic Theory Dynam. Systems, 22 (2002), 437.  doi: 10.1017/S0143385702000214.  Google Scholar

[20]

H. Furstenberg, Strict ergodicity and transformations of the torus,, Amer. Jour. Math., 83 (1961), 573.  doi: 10.2307/2372899.  Google Scholar

[21]

A. Gonzalez-Enriquez, A non-perturbative theorem on conjugation of torus diffeomorphisms to rigid rotations,, preprint, (2005).   Google Scholar

[22]

A. Gonzalez-Enriquez and J. Vano, Estimate of smoothing and composition with applications to conjugation problems,, J. Dynam. Differential Equations, 20 (2008), 239.  doi: 10.1007/s10884-006-9060-z.  Google Scholar

[23]

W. Gottschalk and G. Hedlund, Topological Dynamics,, AMS Colloquium Publications 36, 36 (1955).   Google Scholar

[24]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Math., 583 (1977).   Google Scholar

[25]

W. Huang and Y. Yi, Almost periodically forced circle flows,, J. Funct. Anal., 257 (2009), 832.  doi: 10.1016/j.jfa.2008.12.005.  Google Scholar

[26]

G. Iooss, Bifurcation of Maps and Applications,, North Holland Math. Studies 36, 36 (1979).   Google Scholar

[27]

R. Johnson, Concerning a theorem of Sell,, J. Differential Equations, 30 (1978), 324.  doi: 10.1016/0022-0396(78)90004-9.  Google Scholar

[28]

R. Johnson, P. Kloeden and R. Pavani, Two-step transition in nonautonomous bifurcations: an explanation,, Stoch. Dyn., 2 (2002), 67.  doi: 10.1142/S0219493702000297.  Google Scholar

[29]

R. Johnson and Y. Yi, Hopf bifurcation from non-periodic solutions of differential equations II,, J. Differential Equations, 107 (1994), 310.  doi: 10.1006/jdeq.1994.1015.  Google Scholar

[30]

J. Hale and H. Ko\ccak, Dynamics and Bifurcations,, Texts in Applied Mathematics, 3 (1991).  doi: 10.1007/978-1-4612-4426-4.  Google Scholar

[31]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Cambridge Univ. Press, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[32]

N. Krylov and N. Bogoliubov, La théorie générale de la measure dans son application à l'étude des systémes dynamiques de la méchanique non linéare,, Ann. Math., 38 (1937), 65.   Google Scholar

[33]

Y. Kuznetsov, Elements of Applied Bifurcation Theory,, Springer-Verlag, (1995).  doi: 10.1007/978-1-4757-2421-9.  Google Scholar

[34]

N. Levinson, Small periodic perturbations of an autonomous system with a stable orbit,, Ann. Math., 52 (1950), 727.  doi: 10.2307/1969445.  Google Scholar

[35]

Y. Neimark, On some cases of periodic motions depending on parameters,, Dokl. Akad. Nank. S.S.S.R., 129 (1959), 736.   Google Scholar

[36]

V. Nemytskii and V. Stepanov, Qualitative Theory of Ordinary Differential Equations,, Princeton Univ. Press, (1960).   Google Scholar

[37]

D. Ruelle and F. Takens, On the nature of turbulence,, Comm. Math. Phys., 20 (1971), 167.  doi: 10.1007/BF01646553.  Google Scholar

[38]

R. Sacker, On Invariant Surfaces and Bifurcation of Periodic Solutions of Ordinary Differential Equations,, Ph. D. thesis, (1964).   Google Scholar

[39]

E. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton University Press, (1970).   Google Scholar

[40]

Y. Yi, A generalized integral manifold theorem,, J. Differential Equations, 102 (1993), 153.  doi: 10.1006/jdeq.1993.1026.  Google Scholar

show all references

References:
[1]

J. Aliste-Prieto and T. Jäger, Almost periodic structures and the semi-conjugacy problem,, J. Differential Equations, 252 (2012), 4988.  doi: 10.1016/j.jde.2012.01.030.  Google Scholar

[2]

V. Anagnostopoulou, T. Jäger and G. Keller, A model for the non-autonomous Hopf bifurcation,, preprint, ().   Google Scholar

[3]

L. Arnold, Random Dynamical Systems,, in Dynamical Systems, 1609 (1995), 1.  doi: 10.1007/BFb0095238.  Google Scholar

[4]

M. Bebutov, On dynamical systems in the space of continuous functions,, Bull. Moscow Univ. Matematica, (1941), 1.   Google Scholar

[5]

K. Bjerkäv and R. Johnson, Minimal subsets of projective flows,, Discrete Contin. Dyn. Syst., 9 (2008), 493.  doi: 10.3934/dcdsb.2008.9.493.  Google Scholar

[6]

R. Botts, A. Homburg and T. Young, The Hopf bifurcation with bounded noise,, Discrete Contin. Dyn. Syst., 32 (2012), 2997.  doi: 10.3934/dcds.2012.32.2997.  Google Scholar

[7]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[8]

B. Braaksma and H. Broer, On a quasi-periodic Hopf bifurcation,, Ann. Inst. H. Poincare Anal. Non Lineaire, 4 (1987), 115.   Google Scholar

[9]

B. Braaksma, H. Broer and G. Huitema, Toward a quasi-periodic bifurcation theory,, Memoirs A.M.S., 83 (1990), 83.   Google Scholar

[10]

H. Broer, G. Huitema and M. Sevryuk, Quasi-periodic Motions in Families of Dynamical Systems. Order Amidst Chaos,, Lecture Notes in Mathematics, (1645).   Google Scholar

[11]

H. Broer, KAM-theory: Multiperiodicity in conservative and dissipative systems,, Nieuw Archief v. Wiskunde, 14 (1996), 65.   Google Scholar

[12]

L. Chierchia and C. Falcolini, Compensations in small divisors problems,, Comm. Math. Phys., 175 (1996), 135.  doi: 10.1007/BF02101627.  Google Scholar

[13]

E. Coddington and N. Levinson, Theory of Ordinary Differential Equations,, Mc Graw Hill, (1955).   Google Scholar

[14]

W. Coppel, Dichotomies in Stability Theory,, Lecture Notes in Mathematics 377, 377 (1978).   Google Scholar

[15]

S. Diliberto, Perturbation theorems for periodic surfaces I,, Rend. Circ. Math. Palermo, 9 (1960), 265.  doi: 10.1007/BF02851248.  Google Scholar

[16]

S. Diliberto, New results in periodic surfaces and the averaging principle,, U.S.-Japanese seminar on Differential Equations, (1967), 49.   Google Scholar

[17]

R. Ellis, Lectures on Topological Dynamics,, W.A. Benjamin Co., (1969).   Google Scholar

[18]

B. Fayad, Weak mixing for reparametrized linear flows on the torus,, Ergodic Theory Dynam. Systems, 22 (2002), 187.  doi: 10.1017/S0143385702000081.  Google Scholar

[19]

B. Fayad, Analytic mixing reparametrizations of irrational flows,, Ergodic Theory Dynam. Systems, 22 (2002), 437.  doi: 10.1017/S0143385702000214.  Google Scholar

[20]

H. Furstenberg, Strict ergodicity and transformations of the torus,, Amer. Jour. Math., 83 (1961), 573.  doi: 10.2307/2372899.  Google Scholar

[21]

A. Gonzalez-Enriquez, A non-perturbative theorem on conjugation of torus diffeomorphisms to rigid rotations,, preprint, (2005).   Google Scholar

[22]

A. Gonzalez-Enriquez and J. Vano, Estimate of smoothing and composition with applications to conjugation problems,, J. Dynam. Differential Equations, 20 (2008), 239.  doi: 10.1007/s10884-006-9060-z.  Google Scholar

[23]

W. Gottschalk and G. Hedlund, Topological Dynamics,, AMS Colloquium Publications 36, 36 (1955).   Google Scholar

[24]

M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds,, Lecture Notes in Math., 583 (1977).   Google Scholar

[25]

W. Huang and Y. Yi, Almost periodically forced circle flows,, J. Funct. Anal., 257 (2009), 832.  doi: 10.1016/j.jfa.2008.12.005.  Google Scholar

[26]

G. Iooss, Bifurcation of Maps and Applications,, North Holland Math. Studies 36, 36 (1979).   Google Scholar

[27]

R. Johnson, Concerning a theorem of Sell,, J. Differential Equations, 30 (1978), 324.  doi: 10.1016/0022-0396(78)90004-9.  Google Scholar

[28]

R. Johnson, P. Kloeden and R. Pavani, Two-step transition in nonautonomous bifurcations: an explanation,, Stoch. Dyn., 2 (2002), 67.  doi: 10.1142/S0219493702000297.  Google Scholar

[29]

R. Johnson and Y. Yi, Hopf bifurcation from non-periodic solutions of differential equations II,, J. Differential Equations, 107 (1994), 310.  doi: 10.1006/jdeq.1994.1015.  Google Scholar

[30]

J. Hale and H. Ko\ccak, Dynamics and Bifurcations,, Texts in Applied Mathematics, 3 (1991).  doi: 10.1007/978-1-4612-4426-4.  Google Scholar

[31]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Cambridge Univ. Press, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[32]

N. Krylov and N. Bogoliubov, La théorie générale de la measure dans son application à l'étude des systémes dynamiques de la méchanique non linéare,, Ann. Math., 38 (1937), 65.   Google Scholar

[33]

Y. Kuznetsov, Elements of Applied Bifurcation Theory,, Springer-Verlag, (1995).  doi: 10.1007/978-1-4757-2421-9.  Google Scholar

[34]

N. Levinson, Small periodic perturbations of an autonomous system with a stable orbit,, Ann. Math., 52 (1950), 727.  doi: 10.2307/1969445.  Google Scholar

[35]

Y. Neimark, On some cases of periodic motions depending on parameters,, Dokl. Akad. Nank. S.S.S.R., 129 (1959), 736.   Google Scholar

[36]

V. Nemytskii and V. Stepanov, Qualitative Theory of Ordinary Differential Equations,, Princeton Univ. Press, (1960).   Google Scholar

[37]

D. Ruelle and F. Takens, On the nature of turbulence,, Comm. Math. Phys., 20 (1971), 167.  doi: 10.1007/BF01646553.  Google Scholar

[38]

R. Sacker, On Invariant Surfaces and Bifurcation of Periodic Solutions of Ordinary Differential Equations,, Ph. D. thesis, (1964).   Google Scholar

[39]

E. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton University Press, (1970).   Google Scholar

[40]

Y. Yi, A generalized integral manifold theorem,, J. Differential Equations, 102 (1993), 153.  doi: 10.1006/jdeq.1993.1026.  Google Scholar

[1]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[2]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[3]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[4]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[5]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[6]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[7]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[8]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[9]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[10]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[11]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[12]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[13]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[14]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[15]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (67)
  • HTML views (1)
  • Cited by (2)

[Back to Top]