Citation: |
[1] |
J. Avron and B. Simon, Almost periodic Schrödinger operators II. The integrated density of states, Duke Math. Jour., 50 (1983), 369-391.doi: 10.1215/S0012-7094-83-05016-0. |
[2] |
M. Bebutov, On Dynamical Systems in the Space of Continuous Functions, Bull. Inst. Mat. Moskov. Gos. Univ. 2 (1940). |
[3] |
E. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Mc Graw-Hill, New York, 1955. |
[4] |
W. Coppel, Dichotomies in Stability Theory, Lecture Notes in Mathematics, Vol. 629. Springer-Verlag, Berlin-New York, 1978. |
[5] |
W. Craig, The trace formula for Schrödinger operators on the line, Comm. Math. Phys., 126 (1989), 379-407.doi: 10.1007/BF02125131. |
[6] |
W. Craig and B. Simon, Subharmonicity of the Lyapunov index, Duke Math. Jour., 50 (1983), 551-560.doi: 10.1215/S0012-7094-83-05025-1. |
[7] |
D. Damanik and P. Yuditskii, Counterexamples to the Kotani-Last conjecture for continuum Schrödinger operators via character-automorphic Hardy spaces, Adv. Math., 293 (2016), 738-781, arXiv:1405.6342.doi: 10.1016/j.aim.2016.02.023. |
[8] |
C. De Concini and R. Johnson, The algebraic-geometric AKNS potentials, Ergod. Th. & Dynam. Sys., 7 (1987), 1-24.doi: 10.1017/S0143385700003783. |
[9] |
B. Dubrovin, S. Novikov and V. Matveev, Nonlinear equations of Korteweg-de Vries type, finite zone linear operators and Abelian varieties, Russ. Math. Surveys, 31 (1976), 55-136. |
[10] |
P. Duren, Theory of $H^p$ Spaces, Academic Press, New York, 1970. |
[11] |
R. Ellis, Lectures on Topological Dynamics, Benjamin, New York, 1969. |
[12] |
A. Eremenko and P. Yuditskii, Comb functions, Contemp. Math., 578 (2012), 99-118.doi: 10.1090/conm/578/11472. |
[13] |
F. Gesztesy and B. Simon, The xi function, Acta Matematica, 176 (1996), 49-71.doi: 10.1007/BF02547335. |
[14] |
F. Gesztesy and P. Yuditskii, Spectral properties of a class of reflectionless Schrödinger operators, Jour. Func. Anal., 241 (2006), 486-527.doi: 10.1016/j.jfa.2006.08.006. |
[15] |
I. Goldsheid, S. Molchanov and L. Pastur, A random homogeneous Schrödinger operator has pure point spectrum, Funk. Anal. i Prilozh., 11 (1977), 1-10, 96.doi: 10.1007/BF01135526. |
[16] |
M. Hasumi, Hardy Classes on Infinitely Connected Riemann Surfaces, Lecture Notes in Math. 1027, Springer-Verlag, Berlin, 1983. |
[17] |
L. Helms, Introduction to Potential Theory, Robert E. Krieger Publ. Co., Huntington USA, 1975. |
[18] |
R. Johnson, The recurrent Hill's equation, Jour. Diff. Eqns, 46 (1982), 165-193.doi: 10.1016/0022-0396(82)90114-0. |
[19] |
R. Johnson, A review of recent work on almost periodic differential and difference operators, Acta Applicandae Mathematicae, 1 (1983), 241-261.doi: 10.1007/BF00046601. |
[20] |
R. Johnson, Exponential dichotomy, rotation number and linear differential equations with bounded coefficients, Jour. Diff. Eqns., 61 (1986), 54-78.doi: 10.1016/0022-0396(86)90125-7. |
[21] |
R. Johnson, Lyapunov numbers for the almost-periodic Schroedinger equation, Illinois Jour. Math., 28 (1984), 397-419. |
[22] |
R. Johnson and J. Moser, The rotation number for almost periodic potentials, Comm. Math. Phys., 84 (1982), 403-438.doi: 10.1007/BF01208484. |
[23] |
R. Johnson and L. Zampogni, Some remarks concerning reflectionless Sturm-Liouville potentials, Stoch. and Dynamics, 8 (2008), 413-449.doi: 10.1142/S0219493708002391. |
[24] |
R. Johnson and L. Zampogni, Remarks on a paper of Kotani concerning generalized reflectionless Schrödinger potentials, Discr. Cont. Dynam. Sys. B, 14 (2010), 559-586.doi: 10.3934/dcdsb.2010.14.559. |
[25] |
R. Johnson and L. Zampogni, Remarks on the generalized reflectionless Schrödinger potentials, Jour. Dynam. Diff. Eqns., (2015), 1-29.doi: 10.1007/s10884-014-9424-8. |
[26] |
S. Kotani, Lyapunov indices determine absolutely continuous spectrum of stationary random Schrödinger operators, Proc. Taniguchi Symp. SA, Katata, (1985), 219-250. |
[27] |
S. Kotani, Generalized Floquet theory for stationary Schrödinger operators in one dimension, Chaos Solitons and Fractals, 8 (1997), 1817-1854.doi: 10.1016/S0960-0779(97)00042-8. |
[28] |
S. Kotani, KdV flow on generalized reflectionless Schrödinger potentials, Jour. Math. Phys., Anal., Geom., 4 (2008), 490-528, 574. |
[29] |
D. Lundina, Compactness of the set of reflectionless potentials, Funk. Anal. i Prilozh., 44 (1985), 55-66. |
[30] |
V. Marchenko, The Cauchy problem for the KdV equation with non-decreasing initial data, in What is Integrability?, Springer series in Nonlinear Dynamics, ed. V. Zakharov, Springer-Verlag, Berlin, 1991, 273-318. |
[31] |
H. McKean and P. van Moerbeke, The spectrum of Hill's equation, Invent. Math., 30 (1975), 217-274.doi: 10.1007/BF01425567. |
[32] |
J. Moser, An example of a Schrödinger operator with almost periodic potential and nowhere dense spectrum, Helv. Math. Acta, 56 (1981), 198-224.doi: 10.1007/BF02566210. |
[33] |
V. Nemytskii and V. Stepanov, Qualitative Theory of Differential Equations, Princeton Univ. Press, Princeton, 1960. |
[34] |
V. Oseledets, A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems, Trans. Moscow Math. Soc., 19 (1968), 197-231. |
[35] |
L. Pastur, Spectral properties of disordered systems in the one-body approximation, Comm. Math. Phys., 75 (1980), 179-196.doi: 10.1007/BF01222516. |
[36] |
C. Remling, Topological properties of reflectionelss Jacobi matrices, J. Approx. Theory, 168 (2013), 1-17.doi: 10.1016/j.jat.2012.12.009. |
[37] |
R. Sacker and G. Sell, Existence of dichotomies and invariant splittings for linear differential systems II, Jour. Diff. Eqns, 22 (1976), 478-496.doi: 10.1016/0022-0396(76)90042-5. |
[38] |
M. Sato, Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold, North-Holland Mathematics Studies, 81 (1983), 259-271.doi: 10.1016/S0304-0208(08)72096-6. |
[39] |
G. Segal and G. Wilson, {Loop groups and equations of K-dV type, Publ. IHES, 61 (1985), 5-65. |
[40] |
B. Simon, Almost periodic Schrödinger operators: A review, Adv. Appl. Math., 3 (1982), 463-490.doi: 10.1016/S0196-8858(82)80018-3. |
[41] |
B. Simon, A new approach to inverse spectral theory I. Fundamental formalism, Annals of Math., 150 (1999), 1029-1057.doi: 10.2307/121061. |
[42] |
M. Sodin and P. Yuditskii, Almost periodic Jacobi matrices with homogeneous spectrum, infinite dimensional Jacobi inversion, and Hardy spaces of character-automorphic functions, Jour. Geom. Anal., 7 (1997), 387-435.doi: 10.1007/BF02921627. |
[43] |
M. Sodin and P. Yuditskii, Almost periodic Schrödinger operators with Cantor homogeneous spectrum, Comment. Math. Helv., 70 (1995), 639-658.doi: 10.1007/BF02566026. |
[44] |
H. Weyl, Über gewöhnliche lineare Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen, Math. Annalen, 68 (1910), 220-269.doi: 10.1007/BF01474161. |