August  2016, 9(4): 1201-1234. doi: 10.3934/dcdss.2016049

Forced linear oscillators and the dynamics of Euclidean group extensions

1. 

Department of Mathematics, Rutgers University, Camden NJ 08102, United States

Received  November 2015 Revised  February 2016 Published  August 2016

We study the generic dynamical behaviour of skew-product extensions generated by cocycles arising from equations of forced linear oscillators of special form. This work extends our earlier work on cocycles into compact Lie groups arising from differential equations of special form, (cf. [21]), to the case of non-compact fiber groups of Euclidean type. The earlier techniques do not work in the non-compact case. In the non-compact case one of the main obstacle is the lack of `recurrence'. Thus, our approach to studying Euclidean group extensions is : (i) first, to use a `twisted version' of the so called `conjugation approximation method' and then (ii) to use `geometric-control theoretic methods' developed in our earlier work (cf. [20] and [21]). Even then, our arguments only work for base flows that admit a global Poincaé section, (e.g. for the irrational rotation flows on tori and for certain nil flows). We apply these results to study generic spectral behaviour of the forced quantum harmonic oscillator with time dependent stationary force restricted to satisfy given constraints.
Citation: Mahesh Nerurkar. Forced linear oscillators and the dynamics of Euclidean group extensions. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1201-1234. doi: 10.3934/dcdss.2016049
References:
[1]

A. Avila, G. Forni and C. Ulcigrai, Mixing for time changes of Heisenberg nil flows,, J. of Diff Geometry, 89 (2011), 369.   Google Scholar

[2]

D. Anosov and A. Katok, New examples in smooth ergodic theory,, Trans. Moscow Math. Soc., 23 (1970), 1.   Google Scholar

[3]

P. Ashwin and I. Melbourne, Non-compact drft for relative equillibria and relative periodic orbits,, Nonlinearity, 10 (1997), 595.  doi: 10.1088/0951-7715/10/3/002.  Google Scholar

[4]

P. Ashwin, I. Melbourne and M. Nicol, Euclidean extensions of dynamical systems,, Nonlinearity, 14 (2001), 275.  doi: 10.1088/0951-7715/14/2/306.  Google Scholar

[5]

J. Bellisard, Stability and instability in quantum mechanics,, Trends and developments in the eighties (Bielefeld, (1982), 1.   Google Scholar

[6]

L. Bunimovich, H. Jauslin, J. Lebowitz, A. Pellegrinoti and P. Nilaba, Diffusive energy growth in classical and quantum driven oscillators,, Journal of Statistical Physics, 62 (1991), 793.  doi: 10.1007/BF01017984.  Google Scholar

[7]

M. Combescure, Recurrent versus diffusive dynamics for a kicked quantum oscillator,, Annales de l'Institute Henri Poincaré (A) Physique Theorique, 57 (1992), 67.   Google Scholar

[8]

M. Fields, I. Melbourne and M. Nicol, Symmetric attractors for diffeomorphisms and flows,, Proc. London Math. Soc., 72 (1996), 657.  doi: 10.1112/plms/s3-72.3.657.  Google Scholar

[9]

S. Glasner and B. Weiss, On the construction of minimal skew products,, Israel J. Math., 34 (1979), 321.  doi: 10.1007/BF02760611.  Google Scholar

[10]

M. Herman, Construction de diffeomorphismes ergodiques,, preprint., ().   Google Scholar

[11]

R. Johnson and M. Nerurkar, On null Controllability of linear systems with recurrent coefficients and constrained controls, (jointly with R. Johnson),, Journal of Dynamics and Differential Equations, 4 (1992), 259.  doi: 10.1007/BF01049388.  Google Scholar

[12]

H. Keynes and D. Newton, Ergodicity in $(G,\sigma )$ extensions,, Springer Verlag Lecture Note in Math., 668 (1978), 173.   Google Scholar

[13]

J. Lebowitz and H. Jauslin, Spectral and stability aspects of quantum chaos,, Chaos, 1 (1991), 114.  doi: 10.1063/1.165809.  Google Scholar

[14]

E. Lesigne and D. Volny, Large deviations for generic stationary processes,, Colloquium Mathematicum, 84/85 (2000), 75.   Google Scholar

[15]

E. Merzbacher, Quantum Mechanics, 5th edition,, Wiley, (1965).   Google Scholar

[16]

I. Melbourne, V. Nitica and A. Torok, Transitivity of Euclidean type extensions of hyperbolic systems,, Ergodic Theory and Dynamical Systems, 29 (2009), 1582.  doi: 10.1017/S0143385708000886.  Google Scholar

[17]

M. Nerurkar, On the construction of smooth ergodic skew products,, Ergodic Theory and Dynamical Systems, 8 (1988), 311.  doi: 10.1017/S0143385700004454.  Google Scholar

[18]

M. Nerurkar, Spectral and stability questions regarding evolution of non-autonomous linear systems,, J. of Discrete and Continuous Dynamical Systems, (2004), 114.   Google Scholar

[19]

M. Nerurkar and H. Jauslin, Stability of oscillators driven by ergodic processes,, J. of Math. physics, 35 (1994), 628.  doi: 10.1063/1.530657.  Google Scholar

[20]

M. Nerurkar and H. Sussmann, Construction of minimal cocycles arising from specific differential equations, (jointly with H. Sussmann),, Israel Journal of Mathematics, 100 (1997), 309.  doi: 10.1007/BF02773645.  Google Scholar

[21]

M. Nerurkar and H. Sussmann, Construction of ergodic cocycles arising from linear differential equations of special form,, Journal of Modern Dynamics, 1 (2007), 205.  doi: 10.3934/jmd.2007.1.205.  Google Scholar

[22]

V. Nitica and M. Pollicott, Transitivity of Euclidean group extensions of Anosov diffeomorphisms,, Ergodic Theory and Dynamical Systems, 25 (2005), 257.  doi: 10.1017/S0143385704000471.  Google Scholar

[23]

K. Schmidt, Cocycles and Ergodic Transformation Groups,, MacMillan of India, (1977).   Google Scholar

show all references

References:
[1]

A. Avila, G. Forni and C. Ulcigrai, Mixing for time changes of Heisenberg nil flows,, J. of Diff Geometry, 89 (2011), 369.   Google Scholar

[2]

D. Anosov and A. Katok, New examples in smooth ergodic theory,, Trans. Moscow Math. Soc., 23 (1970), 1.   Google Scholar

[3]

P. Ashwin and I. Melbourne, Non-compact drft for relative equillibria and relative periodic orbits,, Nonlinearity, 10 (1997), 595.  doi: 10.1088/0951-7715/10/3/002.  Google Scholar

[4]

P. Ashwin, I. Melbourne and M. Nicol, Euclidean extensions of dynamical systems,, Nonlinearity, 14 (2001), 275.  doi: 10.1088/0951-7715/14/2/306.  Google Scholar

[5]

J. Bellisard, Stability and instability in quantum mechanics,, Trends and developments in the eighties (Bielefeld, (1982), 1.   Google Scholar

[6]

L. Bunimovich, H. Jauslin, J. Lebowitz, A. Pellegrinoti and P. Nilaba, Diffusive energy growth in classical and quantum driven oscillators,, Journal of Statistical Physics, 62 (1991), 793.  doi: 10.1007/BF01017984.  Google Scholar

[7]

M. Combescure, Recurrent versus diffusive dynamics for a kicked quantum oscillator,, Annales de l'Institute Henri Poincaré (A) Physique Theorique, 57 (1992), 67.   Google Scholar

[8]

M. Fields, I. Melbourne and M. Nicol, Symmetric attractors for diffeomorphisms and flows,, Proc. London Math. Soc., 72 (1996), 657.  doi: 10.1112/plms/s3-72.3.657.  Google Scholar

[9]

S. Glasner and B. Weiss, On the construction of minimal skew products,, Israel J. Math., 34 (1979), 321.  doi: 10.1007/BF02760611.  Google Scholar

[10]

M. Herman, Construction de diffeomorphismes ergodiques,, preprint., ().   Google Scholar

[11]

R. Johnson and M. Nerurkar, On null Controllability of linear systems with recurrent coefficients and constrained controls, (jointly with R. Johnson),, Journal of Dynamics and Differential Equations, 4 (1992), 259.  doi: 10.1007/BF01049388.  Google Scholar

[12]

H. Keynes and D. Newton, Ergodicity in $(G,\sigma )$ extensions,, Springer Verlag Lecture Note in Math., 668 (1978), 173.   Google Scholar

[13]

J. Lebowitz and H. Jauslin, Spectral and stability aspects of quantum chaos,, Chaos, 1 (1991), 114.  doi: 10.1063/1.165809.  Google Scholar

[14]

E. Lesigne and D. Volny, Large deviations for generic stationary processes,, Colloquium Mathematicum, 84/85 (2000), 75.   Google Scholar

[15]

E. Merzbacher, Quantum Mechanics, 5th edition,, Wiley, (1965).   Google Scholar

[16]

I. Melbourne, V. Nitica and A. Torok, Transitivity of Euclidean type extensions of hyperbolic systems,, Ergodic Theory and Dynamical Systems, 29 (2009), 1582.  doi: 10.1017/S0143385708000886.  Google Scholar

[17]

M. Nerurkar, On the construction of smooth ergodic skew products,, Ergodic Theory and Dynamical Systems, 8 (1988), 311.  doi: 10.1017/S0143385700004454.  Google Scholar

[18]

M. Nerurkar, Spectral and stability questions regarding evolution of non-autonomous linear systems,, J. of Discrete and Continuous Dynamical Systems, (2004), 114.   Google Scholar

[19]

M. Nerurkar and H. Jauslin, Stability of oscillators driven by ergodic processes,, J. of Math. physics, 35 (1994), 628.  doi: 10.1063/1.530657.  Google Scholar

[20]

M. Nerurkar and H. Sussmann, Construction of minimal cocycles arising from specific differential equations, (jointly with H. Sussmann),, Israel Journal of Mathematics, 100 (1997), 309.  doi: 10.1007/BF02773645.  Google Scholar

[21]

M. Nerurkar and H. Sussmann, Construction of ergodic cocycles arising from linear differential equations of special form,, Journal of Modern Dynamics, 1 (2007), 205.  doi: 10.3934/jmd.2007.1.205.  Google Scholar

[22]

V. Nitica and M. Pollicott, Transitivity of Euclidean group extensions of Anosov diffeomorphisms,, Ergodic Theory and Dynamical Systems, 25 (2005), 257.  doi: 10.1017/S0143385704000471.  Google Scholar

[23]

K. Schmidt, Cocycles and Ergodic Transformation Groups,, MacMillan of India, (1977).   Google Scholar

[1]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[2]

Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094

[3]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[4]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[5]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[6]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[7]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[8]

Hongyu Cheng, Shimin Wang. Response solutions to harmonic oscillators beyond multi–dimensional brjuno frequency. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020222

[9]

Tong Peng. Designing prorated lifetime warranty strategy for high-value and durable products under two-dimensional warranty. Journal of Industrial & Management Optimization, 2021, 17 (2) : 953-970. doi: 10.3934/jimo.2020006

[10]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[11]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[12]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[13]

Vito Napolitano, Ferdinando Zullo. Codes with few weights arising from linear sets. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020129

[14]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[15]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[16]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[17]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[18]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[19]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[20]

He Zhang, John Harlim, Xiantao Li. Estimating linear response statistics using orthogonal polynomials: An RKHS formulation. Foundations of Data Science, 2020, 2 (4) : 443-485. doi: 10.3934/fods.2020021

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (46)
  • HTML views (1)
  • Cited by (0)

Other articles
by authors

[Back to Top]