August  2016, 9(4): 1201-1234. doi: 10.3934/dcdss.2016049

Forced linear oscillators and the dynamics of Euclidean group extensions

1. 

Department of Mathematics, Rutgers University, Camden NJ 08102, United States

Received  November 2015 Revised  February 2016 Published  August 2016

We study the generic dynamical behaviour of skew-product extensions generated by cocycles arising from equations of forced linear oscillators of special form. This work extends our earlier work on cocycles into compact Lie groups arising from differential equations of special form, (cf. [21]), to the case of non-compact fiber groups of Euclidean type. The earlier techniques do not work in the non-compact case. In the non-compact case one of the main obstacle is the lack of `recurrence'. Thus, our approach to studying Euclidean group extensions is : (i) first, to use a `twisted version' of the so called `conjugation approximation method' and then (ii) to use `geometric-control theoretic methods' developed in our earlier work (cf. [20] and [21]). Even then, our arguments only work for base flows that admit a global Poincaé section, (e.g. for the irrational rotation flows on tori and for certain nil flows). We apply these results to study generic spectral behaviour of the forced quantum harmonic oscillator with time dependent stationary force restricted to satisfy given constraints.
Citation: Mahesh Nerurkar. Forced linear oscillators and the dynamics of Euclidean group extensions. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1201-1234. doi: 10.3934/dcdss.2016049
References:
[1]

A. Avila, G. Forni and C. Ulcigrai, Mixing for time changes of Heisenberg nil flows, J. of Diff Geometry, 89 (2011), 369-410.

[2]

D. Anosov and A. Katok, New examples in smooth ergodic theory, Trans. Moscow Math. Soc., 23 (1970), 1-35.

[3]

P. Ashwin and I. Melbourne, Non-compact drft for relative equillibria and relative periodic orbits, Nonlinearity, 10 (1997), 595-616. doi: 10.1088/0951-7715/10/3/002.

[4]

P. Ashwin, I. Melbourne and M. Nicol, Euclidean extensions of dynamical systems, Nonlinearity, 14 (2001), 275-300. doi: 10.1088/0951-7715/14/2/306.

[5]

J. Bellisard, Stability and instability in quantum mechanics, Trends and developments in the eighties (Bielefeld, 1982/1983), World Sci. Publishing, Singapore, 1985, 1-106.

[6]

L. Bunimovich, H. Jauslin, J. Lebowitz, A. Pellegrinoti and P. Nilaba, Diffusive energy growth in classical and quantum driven oscillators, Journal of Statistical Physics, 62 (1991), 793-817. doi: 10.1007/BF01017984.

[7]

M. Combescure, Recurrent versus diffusive dynamics for a kicked quantum oscillator, Annales de l'Institute Henri Poincaré (A) Physique Theorique, 57 (1992), 67-87.

[8]

M. Fields, I. Melbourne and M. Nicol, Symmetric attractors for diffeomorphisms and flows, Proc. London Math. Soc., 72 (1996), 657-696. doi: 10.1112/plms/s3-72.3.657.

[9]

S. Glasner and B. Weiss, On the construction of minimal skew products, Israel J. Math., 34 (1979), 321-336. doi: 10.1007/BF02760611.

[10]

M. Herman, Construction de diffeomorphismes ergodiques, preprint.

[11]

R. Johnson and M. Nerurkar, On null Controllability of linear systems with recurrent coefficients and constrained controls, (jointly with R. Johnson), Journal of Dynamics and Differential Equations, 4 (1992), 259-273. doi: 10.1007/BF01049388.

[12]

H. Keynes and D. Newton, Ergodicity in $(G,\sigma )$ extensions, Springer Verlag Lecture Note in Math., 668 (1978), 173-178.

[13]

J. Lebowitz and H. Jauslin, Spectral and stability aspects of quantum chaos, Chaos, 1 (1991), 114-121. doi: 10.1063/1.165809.

[14]

E. Lesigne and D. Volny, Large deviations for generic stationary processes, Colloquium Mathematicum, 84/85 (2000), 75-82.

[15]

E. Merzbacher, Quantum Mechanics, 5th edition, Wiley, New York, 1965.

[16]

I. Melbourne, V. Nitica and A. Torok, Transitivity of Euclidean type extensions of hyperbolic systems, Ergodic Theory and Dynamical Systems, 29 (2009), 1582-1602. doi: 10.1017/S0143385708000886.

[17]

M. Nerurkar, On the construction of smooth ergodic skew products, Ergodic Theory and Dynamical Systems, 8 (1988), 311-326. doi: 10.1017/S0143385700004454.

[18]

M. Nerurkar, Spectral and stability questions regarding evolution of non-autonomous linear systems, J. of Discrete and Continuous Dynamical Systems, (2004), 114-120.

[19]

M. Nerurkar and H. Jauslin, Stability of oscillators driven by ergodic processes, J. of Math. physics, 35 (1994), 628-645. doi: 10.1063/1.530657.

[20]

M. Nerurkar and H. Sussmann, Construction of minimal cocycles arising from specific differential equations, (jointly with H. Sussmann), Israel Journal of Mathematics, 100 (1997), 309-326. doi: 10.1007/BF02773645.

[21]

M. Nerurkar and H. Sussmann, Construction of ergodic cocycles arising from linear differential equations of special form, Journal of Modern Dynamics, 1 (2007), 205-253. doi: 10.3934/jmd.2007.1.205.

[22]

V. Nitica and M. Pollicott, Transitivity of Euclidean group extensions of Anosov diffeomorphisms, Ergodic Theory and Dynamical Systems, 25 (2005), 257-269. doi: 10.1017/S0143385704000471.

[23]

K. Schmidt, Cocycles and Ergodic Transformation Groups, MacMillan of India, 1977.

show all references

References:
[1]

A. Avila, G. Forni and C. Ulcigrai, Mixing for time changes of Heisenberg nil flows, J. of Diff Geometry, 89 (2011), 369-410.

[2]

D. Anosov and A. Katok, New examples in smooth ergodic theory, Trans. Moscow Math. Soc., 23 (1970), 1-35.

[3]

P. Ashwin and I. Melbourne, Non-compact drft for relative equillibria and relative periodic orbits, Nonlinearity, 10 (1997), 595-616. doi: 10.1088/0951-7715/10/3/002.

[4]

P. Ashwin, I. Melbourne and M. Nicol, Euclidean extensions of dynamical systems, Nonlinearity, 14 (2001), 275-300. doi: 10.1088/0951-7715/14/2/306.

[5]

J. Bellisard, Stability and instability in quantum mechanics, Trends and developments in the eighties (Bielefeld, 1982/1983), World Sci. Publishing, Singapore, 1985, 1-106.

[6]

L. Bunimovich, H. Jauslin, J. Lebowitz, A. Pellegrinoti and P. Nilaba, Diffusive energy growth in classical and quantum driven oscillators, Journal of Statistical Physics, 62 (1991), 793-817. doi: 10.1007/BF01017984.

[7]

M. Combescure, Recurrent versus diffusive dynamics for a kicked quantum oscillator, Annales de l'Institute Henri Poincaré (A) Physique Theorique, 57 (1992), 67-87.

[8]

M. Fields, I. Melbourne and M. Nicol, Symmetric attractors for diffeomorphisms and flows, Proc. London Math. Soc., 72 (1996), 657-696. doi: 10.1112/plms/s3-72.3.657.

[9]

S. Glasner and B. Weiss, On the construction of minimal skew products, Israel J. Math., 34 (1979), 321-336. doi: 10.1007/BF02760611.

[10]

M. Herman, Construction de diffeomorphismes ergodiques, preprint.

[11]

R. Johnson and M. Nerurkar, On null Controllability of linear systems with recurrent coefficients and constrained controls, (jointly with R. Johnson), Journal of Dynamics and Differential Equations, 4 (1992), 259-273. doi: 10.1007/BF01049388.

[12]

H. Keynes and D. Newton, Ergodicity in $(G,\sigma )$ extensions, Springer Verlag Lecture Note in Math., 668 (1978), 173-178.

[13]

J. Lebowitz and H. Jauslin, Spectral and stability aspects of quantum chaos, Chaos, 1 (1991), 114-121. doi: 10.1063/1.165809.

[14]

E. Lesigne and D. Volny, Large deviations for generic stationary processes, Colloquium Mathematicum, 84/85 (2000), 75-82.

[15]

E. Merzbacher, Quantum Mechanics, 5th edition, Wiley, New York, 1965.

[16]

I. Melbourne, V. Nitica and A. Torok, Transitivity of Euclidean type extensions of hyperbolic systems, Ergodic Theory and Dynamical Systems, 29 (2009), 1582-1602. doi: 10.1017/S0143385708000886.

[17]

M. Nerurkar, On the construction of smooth ergodic skew products, Ergodic Theory and Dynamical Systems, 8 (1988), 311-326. doi: 10.1017/S0143385700004454.

[18]

M. Nerurkar, Spectral and stability questions regarding evolution of non-autonomous linear systems, J. of Discrete and Continuous Dynamical Systems, (2004), 114-120.

[19]

M. Nerurkar and H. Jauslin, Stability of oscillators driven by ergodic processes, J. of Math. physics, 35 (1994), 628-645. doi: 10.1063/1.530657.

[20]

M. Nerurkar and H. Sussmann, Construction of minimal cocycles arising from specific differential equations, (jointly with H. Sussmann), Israel Journal of Mathematics, 100 (1997), 309-326. doi: 10.1007/BF02773645.

[21]

M. Nerurkar and H. Sussmann, Construction of ergodic cocycles arising from linear differential equations of special form, Journal of Modern Dynamics, 1 (2007), 205-253. doi: 10.3934/jmd.2007.1.205.

[22]

V. Nitica and M. Pollicott, Transitivity of Euclidean group extensions of Anosov diffeomorphisms, Ergodic Theory and Dynamical Systems, 25 (2005), 257-269. doi: 10.1017/S0143385704000471.

[23]

K. Schmidt, Cocycles and Ergodic Transformation Groups, MacMillan of India, 1977.

[1]

Roy Adler, Bruce Kitchens, Michael Shub. Stably ergodic skew products. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 349-350. doi: 10.3934/dcds.1996.2.349

[2]

Roy Adler, Bruce Kitchens, Michael Shub. Errata to "Stably ergodic skew products". Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 456-456. doi: 10.3934/dcds.1999.5.456

[3]

Mahesh G. Nerurkar, Héctor J. Sussmann. Construction of ergodic cocycles that are fundamental solutions to linear systems of a special form. Journal of Modern Dynamics, 2007, 1 (2) : 205-253. doi: 10.3934/jmd.2007.1.205

[4]

Núria Fagella, Àngel Jorba, Marc Jorba-Cuscó, Joan Carles Tatjer. Classification of linear skew-products of the complex plane and an affine route to fractalization. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3767-3787. doi: 10.3934/dcds.2019153

[5]

Kazuyuki Yagasaki. Degenerate resonances in forced oscillators. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 423-438. doi: 10.3934/dcdsb.2003.3.423

[6]

Matthieu Astorg, Fabrizio Bianchi. Higher bifurcations for polynomial skew products. Journal of Modern Dynamics, 2022, 18: 69-99. doi: 10.3934/jmd.2022003

[7]

D. Bonheure, C. Fabry, D. Smets. Periodic solutions of forced isochronous oscillators at resonance. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 907-930. doi: 10.3934/dcds.2002.8.907

[8]

Àlex Haro. On strange attractors in a class of pinched skew products. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 605-617. doi: 10.3934/dcds.2012.32.605

[9]

Eugen Mihailescu, Mariusz Urbański. Transversal families of hyperbolic skew-products. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 907-928. doi: 10.3934/dcds.2008.21.907

[10]

Jose S. Cánovas, Antonio Falcó. The set of periods for a class of skew-products. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 893-900. doi: 10.3934/dcds.2000.6.893

[11]

Matúš Dirbák. Minimal skew products with hypertransitive or mixing properties. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1657-1674. doi: 10.3934/dcds.2012.32.1657

[12]

Viorel Nitica. Examples of topologically transitive skew-products. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 351-360. doi: 10.3934/dcds.2000.6.351

[13]

Wen Huang, Jianya Liu, Ke Wang. Möbius disjointness for skew products on a circle and a nilmanifold. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3531-3553. doi: 10.3934/dcds.2021006

[14]

Jon Aaronson, Michael Bromberg, Nishant Chandgotia. Rational ergodicity of step function skew products. Journal of Modern Dynamics, 2018, 13: 1-42. doi: 10.3934/jmd.2018012

[15]

Nikolaos Karaliolios. Differentiable Rigidity for quasiperiodic cocycles in compact Lie groups. Journal of Modern Dynamics, 2017, 11: 125-142. doi: 10.3934/jmd.2017006

[16]

Alexander I. Bufetov. Hölder cocycles and ergodic integrals for translation flows on flat surfaces. Electronic Research Announcements, 2010, 17: 34-42. doi: 10.3934/era.2010.17.34

[17]

Julia Brettschneider. On uniform convergence in ergodic theorems for a class of skew product transformations. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 873-891. doi: 10.3934/dcds.2011.29.873

[18]

C.P. Walkden. Stable ergodicity of skew products of one-dimensional hyperbolic flows. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 897-904. doi: 10.3934/dcds.1999.5.897

[19]

Kohei Ueno. Weighted Green functions of nondegenerate polynomial skew products on $\mathbb{C}^2$. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 985-996. doi: 10.3934/dcds.2011.31.985

[20]

Kohei Ueno. Weighted Green functions of polynomial skew products on $\mathbb{C}^2$. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2283-2305. doi: 10.3934/dcds.2014.34.2283

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (166)
  • HTML views (1)
  • Cited by (0)

Other articles
by authors

[Back to Top]