August  2016, 9(4): 1235-1268. doi: 10.3934/dcdss.2016050

Topological decoupling and linearization of nonautonomous evolution equations

1. 

Institut für Mathematik, Alpen-Adria Universität Klagenfurt, Universitätsstraße 65-67, 9020 Klagenfurt, Austria

Received  July 2015 Revised  September 2015 Published  August 2016

Topological linearization results typically require solution flows rather than merely semiflows. An exception occurs when the linearization fulfills spectral assumptions met e.g. for scalar reaction-diffusion equations. We employ tools from the geometric theory of nonautonomous dynamical systems in order to extend earlier work by Lu [12] to time-variant evolution equations under corresponding conditions on the Sacker-Sell spectrum of the linear part. Our abstract results are applied to nonautonomous reaction-diffusion and convection equations.
Citation: Christian Pötzsche, Evamaria Russ. Topological decoupling and linearization of nonautonomous evolution equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1235-1268. doi: 10.3934/dcdss.2016050
References:
[1]

B. Aulbach and B. M. Garay, Partial linearization for noninvertible mappings,, Z. Angew. Math. Phys., 45 (1994), 505.  doi: 10.1007/BF00991895.  Google Scholar

[2]

B. Aulbach and T. Wanner, The Hartman-Grobman theorem for Carathéodory-type differential equations in Banach spaces,, Nonlin. Analysis (TMA), 40 (2000), 91.  doi: 10.1016/S0362-546X(00)85006-3.  Google Scholar

[3]

P. Bates and K. Lu, A Hartman-Grobman theorem for the Cahn-Hilliard and phase-field equations,, J. Dyn. Differ. Equations, 6 (1994), 101.  doi: 10.1007/BF02219190.  Google Scholar

[4]

A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences,, 182. Springer, (2013).  doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[5]

C. Chicone and Y. Latushkin, Center manifolds for infinite dimensional nonautonomous differential equations,, J. Differ. Equations, 141 (1997), 356.  doi: 10.1006/jdeq.1997.3343.  Google Scholar

[6]

S.-N. Chow, X.-B. Lin and K. Lu, Smooth invariant foliations in infinite dimensional spaces,, J. Differ. Equations, 94 (1991), 266.  doi: 10.1016/0022-0396(91)90093-O.  Google Scholar

[7]

S.-N. Chow and H. Leiva, Dynamical spectrum for skew product flows in Banach spaces,, In J. Henderson (ed.), (1995), 85.   Google Scholar

[8]

G. Farkas, A Hartman-Grobman result for retarded functional differential equations with an application to the numerics around hyperbolic equilibria,, Z. Angew. Math. Phys., 52 (2001), 421.  doi: 10.1007/PL00001554.  Google Scholar

[9]

D. Grobman, Homeomorphism of systems of differential equations,, Doklady Akademii Nauk SSSR, 128 (1959), 880.   Google Scholar

[10]

P. Hartman, A lemma in the theory of structural stability of differential equations,, Proc. Am. Math. Soc., 11 (1960), 610.  doi: 10.1090/S0002-9939-1960-0121542-7.  Google Scholar

[11]

J. Li, K. Lu and P. Bates, Invariant foliations for random dynamical systems,, Discrete and Continuous Dynamical Systems, 34 (2014), 3639.  doi: 10.3934/dcds.2014.34.3639.  Google Scholar

[12]

K. Lu, A Hartman-Grobman theorem for scalar reaction-diffusion equations,, J. Differ. Equations, 93 (1991), 364.  doi: 10.1016/0022-0396(91)90017-4.  Google Scholar

[13]

X. Mora and J. Solà-Morales, Existence and nonexistence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equation,, In S.-N. Chow and J.K. Hale (eds.), 37 (1987), 187.   Google Scholar

[14]

N. Van Minh, F. Räbiger and R. Schnaubelt, Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line,, Integral Equations Oper. Theory, 32 (1998), 332.  doi: 10.1007/BF01203774.  Google Scholar

[15]

K. J. Palmer, A generalization of Hartman's linearization theorem,, J. Math. Anal. Appl., 41 (1973), 753.  doi: 10.1016/0022-247X(73)90245-X.  Google Scholar

[16]

C. Pötzsche, Topological decoupling, linearization and perturbation on inhomogeneous time scales,, J. Differ. Equations, 245 (2008), 1210.  doi: 10.1016/j.jde.2008.06.011.  Google Scholar

[17]

C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems, Lect. Notes Math. 2002,, Springer, (2010).  doi: 10.1007/978-3-642-14258-1.  Google Scholar

[18]

C. Pötzsche and E. Russ, Notes on spectrum and exponential decay in nonautonomous evolutionary equations,, Electron. J. Qual. Theory Differ. Equ., (2015).   Google Scholar

[19]

E. Russ, On the Dichotomy Spectrum in Infinite Dimensions,, PhD thesis, (2015).   Google Scholar

[20]

A. Reinfelds, Partial decoupling for noninvertible mappings,, Differential Equations and Dynamical Systems, 2 (1994), 205.   Google Scholar

[21]

A. Reinfelds, The reduction principle for discrete dynamical and semidynamical systems in metric spaces,, Z. Angew. Math. Phys., 45 (1994), 933.  doi: 10.1007/BF00952086.  Google Scholar

[22]

R. Sacker and G. Sell, A spectral theory for linear differential systems,, J. Differ. Equations, 27 (1978), 320.  doi: 10.1016/0022-0396(78)90057-8.  Google Scholar

[23]

G. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143., Springer, (2002).  doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[24]

S. Siegmund, Spektraltheorie, Glatte Faserungen und Normalformen Für Differentialgleichungen vom Carathéodory-Typ,, Dissertation, (1999).   Google Scholar

[25]

A. N. Šošitaĭšvili, Bifurcations of topological type at singular points of parametrized vector fields,, Functional Analysis and its Applications, 5 (1972), 169.   Google Scholar

[26]

N. Sternberg, A Hartman-Grobman theorem for a class of retarded functional differential equations,, J. Math. Anal. Appl., 176 (1993), 156.  doi: 10.1006/jmaa.1993.1206.  Google Scholar

[27]

E. M. Wright, A nonlinear difference-differential equation,, J. Reine Angew. Math. 194 (1955), 194 (1955), 66.   Google Scholar

show all references

References:
[1]

B. Aulbach and B. M. Garay, Partial linearization for noninvertible mappings,, Z. Angew. Math. Phys., 45 (1994), 505.  doi: 10.1007/BF00991895.  Google Scholar

[2]

B. Aulbach and T. Wanner, The Hartman-Grobman theorem for Carathéodory-type differential equations in Banach spaces,, Nonlin. Analysis (TMA), 40 (2000), 91.  doi: 10.1016/S0362-546X(00)85006-3.  Google Scholar

[3]

P. Bates and K. Lu, A Hartman-Grobman theorem for the Cahn-Hilliard and phase-field equations,, J. Dyn. Differ. Equations, 6 (1994), 101.  doi: 10.1007/BF02219190.  Google Scholar

[4]

A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences,, 182. Springer, (2013).  doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[5]

C. Chicone and Y. Latushkin, Center manifolds for infinite dimensional nonautonomous differential equations,, J. Differ. Equations, 141 (1997), 356.  doi: 10.1006/jdeq.1997.3343.  Google Scholar

[6]

S.-N. Chow, X.-B. Lin and K. Lu, Smooth invariant foliations in infinite dimensional spaces,, J. Differ. Equations, 94 (1991), 266.  doi: 10.1016/0022-0396(91)90093-O.  Google Scholar

[7]

S.-N. Chow and H. Leiva, Dynamical spectrum for skew product flows in Banach spaces,, In J. Henderson (ed.), (1995), 85.   Google Scholar

[8]

G. Farkas, A Hartman-Grobman result for retarded functional differential equations with an application to the numerics around hyperbolic equilibria,, Z. Angew. Math. Phys., 52 (2001), 421.  doi: 10.1007/PL00001554.  Google Scholar

[9]

D. Grobman, Homeomorphism of systems of differential equations,, Doklady Akademii Nauk SSSR, 128 (1959), 880.   Google Scholar

[10]

P. Hartman, A lemma in the theory of structural stability of differential equations,, Proc. Am. Math. Soc., 11 (1960), 610.  doi: 10.1090/S0002-9939-1960-0121542-7.  Google Scholar

[11]

J. Li, K. Lu and P. Bates, Invariant foliations for random dynamical systems,, Discrete and Continuous Dynamical Systems, 34 (2014), 3639.  doi: 10.3934/dcds.2014.34.3639.  Google Scholar

[12]

K. Lu, A Hartman-Grobman theorem for scalar reaction-diffusion equations,, J. Differ. Equations, 93 (1991), 364.  doi: 10.1016/0022-0396(91)90017-4.  Google Scholar

[13]

X. Mora and J. Solà-Morales, Existence and nonexistence of finite-dimensional globally attracting invariant manifolds in semilinear damped wave equation,, In S.-N. Chow and J.K. Hale (eds.), 37 (1987), 187.   Google Scholar

[14]

N. Van Minh, F. Räbiger and R. Schnaubelt, Exponential stability, exponential expansiveness, and exponential dichotomy of evolution equations on the half-line,, Integral Equations Oper. Theory, 32 (1998), 332.  doi: 10.1007/BF01203774.  Google Scholar

[15]

K. J. Palmer, A generalization of Hartman's linearization theorem,, J. Math. Anal. Appl., 41 (1973), 753.  doi: 10.1016/0022-247X(73)90245-X.  Google Scholar

[16]

C. Pötzsche, Topological decoupling, linearization and perturbation on inhomogeneous time scales,, J. Differ. Equations, 245 (2008), 1210.  doi: 10.1016/j.jde.2008.06.011.  Google Scholar

[17]

C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems, Lect. Notes Math. 2002,, Springer, (2010).  doi: 10.1007/978-3-642-14258-1.  Google Scholar

[18]

C. Pötzsche and E. Russ, Notes on spectrum and exponential decay in nonautonomous evolutionary equations,, Electron. J. Qual. Theory Differ. Equ., (2015).   Google Scholar

[19]

E. Russ, On the Dichotomy Spectrum in Infinite Dimensions,, PhD thesis, (2015).   Google Scholar

[20]

A. Reinfelds, Partial decoupling for noninvertible mappings,, Differential Equations and Dynamical Systems, 2 (1994), 205.   Google Scholar

[21]

A. Reinfelds, The reduction principle for discrete dynamical and semidynamical systems in metric spaces,, Z. Angew. Math. Phys., 45 (1994), 933.  doi: 10.1007/BF00952086.  Google Scholar

[22]

R. Sacker and G. Sell, A spectral theory for linear differential systems,, J. Differ. Equations, 27 (1978), 320.  doi: 10.1016/0022-0396(78)90057-8.  Google Scholar

[23]

G. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143., Springer, (2002).  doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[24]

S. Siegmund, Spektraltheorie, Glatte Faserungen und Normalformen Für Differentialgleichungen vom Carathéodory-Typ,, Dissertation, (1999).   Google Scholar

[25]

A. N. Šošitaĭšvili, Bifurcations of topological type at singular points of parametrized vector fields,, Functional Analysis and its Applications, 5 (1972), 169.   Google Scholar

[26]

N. Sternberg, A Hartman-Grobman theorem for a class of retarded functional differential equations,, J. Math. Anal. Appl., 176 (1993), 156.  doi: 10.1006/jmaa.1993.1206.  Google Scholar

[27]

E. M. Wright, A nonlinear difference-differential equation,, J. Reine Angew. Math. 194 (1955), 194 (1955), 66.   Google Scholar

[1]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[2]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[3]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[6]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[7]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[8]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[9]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[10]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[11]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[12]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[13]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[14]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[15]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[16]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[17]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[18]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[19]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[20]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (48)
  • HTML views (2)
  • Cited by (1)

Other articles
by authors

[Back to Top]