October  2016, 9(5): 1351-1375. doi: 10.3934/dcdss.2016054

The IDSA and the homogeneous sphere: Issues and possible improvements

1. 

Université de Genève, Section de Mathématiques, 2-4, rue du Lièvre, CP 64, CH-1211 Genève, Switzerland

Received  December 2014 Revised  July 2015 Published  October 2016

In this paper, we are concerned with the study of the Isotropic Diffusion Source Approximation (IDSA) [6] of radiative transfer. After having recalled well-known limits of the radiative transfer equation, we present the IDSA and adapt it to the case of the homogeneous sphere. We then show that for this example the IDSA suffers from severe numerical difficulties. We argue that these difficulties originate in the min-max switch coupling mechanism used in the IDSA. To overcome this problem we reformulate the IDSA to avoid the problematic coupling. This allows us to access the modeling error of the IDSA for the homogeneous sphere test case. The IDSA is shown to overestimate the streaming component, hence we propose a new version of the IDSA, which is numerically shown to be more accurate than the old one. Analytical results and numerical tests are provided to support the accuracy of the new proposed approximation.
Citation: Jérôme Michaud. The IDSA and the homogeneous sphere: Issues and possible improvements. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1351-1375. doi: 10.3934/dcdss.2016054
References:
[1]

H. Berninger, E. Frénod, M. Gander, M. Liebendörfer, J. Michaud and N. Vasset, A mathematical description of the idsa for supernova neutrino transport, its discretization and a comparison with a finite volume scheme for boltzmann's equation, in ESAIM: Proc., CEMRACS'11: Multiscale Coupling of Complex Models in Scientific Computing, 38 (2012), 163-182. doi: 10.1051/proc/201238009.

[2]

H. Berninger, E. Frénod, M. Gander, M. Liebendörfer, J. Michaud and N. Vasset, Derivation of the IDSA for supernova neutrino transport by asymptotic expansions, SIMA, 45 (2013), 3229-3265. doi: 10.1137/12089243X.

[3]

S. Bruenn, Stellar core collapse: Numerical model and infall epoch, Astrophys. J. Suppl. S., 58 (1985), 771-841. doi: 10.1086/191056.

[4]

J. J. Duderstadt and W. R. Martin, Transport Theory, John Wiley & Sons, 1979.

[5]

C. Levermore and G. Pomraning, A flux-limited diffusion theory, The Astrophysical Journal, 248 (1981), 321-334. doi: 10.1086/159157.

[6]

M. Liebendörfer, S. Whitehouse and T. Fischer, The Isotropic Diffusion Source Approximation for Supernova Neutrino Transport, Astrophys. J., 698 (2009), 1174-1190.

[7]

J. Michaud, From Neutrino Radiative Transfer in Core-Collapse Supernovae to Fuzzy Domain Based Coupling Methods, PhD thesis, Université de Genève, 2015.

[8]

D. Mihalas and B. Weibel-Mihalas, Foundation of Radiation Hydrodynamics, Oxford University Press, 1984.

[9]

J. Smit, L. Van den Horn and S. Bludman, Closure in flux-limited neutrino diffusion and two-moment transport, Astronomy and Astrophysics, 356 (2000), 559-569.

show all references

References:
[1]

H. Berninger, E. Frénod, M. Gander, M. Liebendörfer, J. Michaud and N. Vasset, A mathematical description of the idsa for supernova neutrino transport, its discretization and a comparison with a finite volume scheme for boltzmann's equation, in ESAIM: Proc., CEMRACS'11: Multiscale Coupling of Complex Models in Scientific Computing, 38 (2012), 163-182. doi: 10.1051/proc/201238009.

[2]

H. Berninger, E. Frénod, M. Gander, M. Liebendörfer, J. Michaud and N. Vasset, Derivation of the IDSA for supernova neutrino transport by asymptotic expansions, SIMA, 45 (2013), 3229-3265. doi: 10.1137/12089243X.

[3]

S. Bruenn, Stellar core collapse: Numerical model and infall epoch, Astrophys. J. Suppl. S., 58 (1985), 771-841. doi: 10.1086/191056.

[4]

J. J. Duderstadt and W. R. Martin, Transport Theory, John Wiley & Sons, 1979.

[5]

C. Levermore and G. Pomraning, A flux-limited diffusion theory, The Astrophysical Journal, 248 (1981), 321-334. doi: 10.1086/159157.

[6]

M. Liebendörfer, S. Whitehouse and T. Fischer, The Isotropic Diffusion Source Approximation for Supernova Neutrino Transport, Astrophys. J., 698 (2009), 1174-1190.

[7]

J. Michaud, From Neutrino Radiative Transfer in Core-Collapse Supernovae to Fuzzy Domain Based Coupling Methods, PhD thesis, Université de Genève, 2015.

[8]

D. Mihalas and B. Weibel-Mihalas, Foundation of Radiation Hydrodynamics, Oxford University Press, 1984.

[9]

J. Smit, L. Van den Horn and S. Bludman, Closure in flux-limited neutrino diffusion and two-moment transport, Astronomy and Astrophysics, 356 (2000), 559-569.

[1]

Arnaud Debussche, Sylvain De Moor, Julien Vovelle. Diffusion limit for the radiative transfer equation perturbed by a Wiener process. Kinetic and Related Models, 2015, 8 (3) : 467-492. doi: 10.3934/krm.2015.8.467

[2]

Martin Frank, Cory D. Hauck, Edgar Olbrant. Perturbed, entropy-based closure for radiative transfer. Kinetic and Related Models, 2013, 6 (3) : 557-587. doi: 10.3934/krm.2013.6.557

[3]

J-F. Clouët, R. Sentis. Milne problem for non-grey radiative transfer. Kinetic and Related Models, 2009, 2 (2) : 345-362. doi: 10.3934/krm.2009.2.345

[4]

Martin Frank, Benjamin Seibold. Optimal prediction for radiative transfer: A new perspective on moment closure. Kinetic and Related Models, 2011, 4 (3) : 717-733. doi: 10.3934/krm.2011.4.717

[5]

Grégoire Allaire, Zakaria Habibi. Second order corrector in the homogenization of a conductive-radiative heat transfer problem. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 1-36. doi: 10.3934/dcdsb.2013.18.1

[6]

I-Kun Chen, Daisuke Kawagoe. Propagation of boundary-induced discontinuity in stationary radiative transfer and its application to the optical tomography. Inverse Problems and Imaging, 2019, 13 (2) : 337-351. doi: 10.3934/ipi.2019017

[7]

Graham W. Alldredge, Ruo Li, Weiming Li. Approximating the $M_2$ method by the extended quadrature method of moments for radiative transfer in slab geometry. Kinetic and Related Models, 2016, 9 (2) : 237-249. doi: 10.3934/krm.2016.9.237

[8]

El Miloud Zaoui, Marc Laforest. Stability and modeling error for the Boltzmann equation. Kinetic and Related Models, 2014, 7 (2) : 401-414. doi: 10.3934/krm.2014.7.401

[9]

Jacky Cresson. The transfer lemma for Graff tori and Arnold diffusion time. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 787-800. doi: 10.3934/dcds.2001.7.787

[10]

Matthew B. Rudd. Statistical exponential formulas for homogeneous diffusion. Communications on Pure and Applied Analysis, 2015, 14 (1) : 269-284. doi: 10.3934/cpaa.2015.14.269

[11]

Dorota Bors, Robert Stańczy. Dynamical system modeling fermionic limit. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 45-55. doi: 10.3934/dcdsb.2018004

[12]

Kim S. Bey, Peter Z. Daffer, Hideaki Kaneko, Puntip Toghaw. Error analysis of the p-version discontinuous Galerkin method for heat transfer in built-up structures. Communications on Pure and Applied Analysis, 2007, 6 (3) : 719-740. doi: 10.3934/cpaa.2007.6.719

[13]

Ting Zhang. The modeling error of well treatment for unsteady flow in porous media. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2171-2185. doi: 10.3934/dcdsb.2015.20.2171

[14]

Li Li, Yanyan Li, Xukai Yan. Homogeneous solutions of stationary Navier-Stokes equations with isolated singularities on the unit sphere. Ⅲ. Two singularities. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 7163-7211. doi: 10.3934/dcds.2019300

[15]

Yoshitsugu Kabeya. Eigenvalues of the Laplace-Beltrami operator under the homogeneous Neumann condition on a large zonal domain in the unit sphere. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3529-3559. doi: 10.3934/dcds.2020040

[16]

Arnaud Debussche, Julien Vovelle. Diffusion limit for a stochastic kinetic problem. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2305-2326. doi: 10.3934/cpaa.2012.11.2305

[17]

José Ginés Espín Buendía, Víctor Jiménez Lopéz. A topological characterization of the $\omega$-limit sets of analytic vector fields on open subsets of the sphere. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1143-1173. doi: 10.3934/dcdsb.2019010

[18]

Dohyun Kim. Asymptotic behavior of a second-order swarm sphere model and its kinetic limit. Kinetic and Related Models, 2020, 13 (2) : 401-434. doi: 10.3934/krm.2020014

[19]

Corentin Le Bihan. Boltzmann-Grad limit of a hard sphere system in a box with isotropic boundary conditions. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1903-1932. doi: 10.3934/dcds.2021177

[20]

M. González, J. Jansson, S. Korotov. A posteriori error analysis of a stabilized mixed FEM for convection-diffusion problems. Conference Publications, 2015, 2015 (special) : 525-532. doi: 10.3934/proc.2015.0525

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (156)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]