October  2016, 9(5): 1447-1473. doi: 10.3934/dcdss.2016058

Expansion of a singularly perturbed equation with a two-scale converging convection term

1. 

Laboratoire Paul Painlevé, CNRS & Universit é de Sciences et Technologies Lille 1, Cit é Scientifique, F-59655 Villeneuve d'Ascq, France

Received  February 2015 Revised  September 2015 Published  October 2016

In many physical contexts, evolution convection equations may present some very large amplitude convective terms. As an example, in the context of magnetic confinement fusion, the distribution function that describes the plasma satisfies the Vlasov equation in which some terms are of the same order as $\epsilon^{-1}$, $\epsilon \ll 1$ being the characteristic gyrokinetic period of the particles around the magnetic lines. In this paper, we aim to present a model hierarchy for modeling the distribution function for any value of $\epsilon$ by using some two-scale convergence tools. Following Frénod & Sonnendrücker's recent work, we choose the framework of a singularly perturbed convection equation where the convective terms admit either a high amplitude part or a an oscillating part with high frequency $\epsilon^{-1} \gg 1$. In this abstract framework, we derive an expansion with respect to the small parameter $\epsilon$ and we recursively identify each term of this expansion. Finally, we apply this new model hierarchy to the context of a linear Vlasov equation in three physical contexts linked to the magnetic confinement fusion and the evolution of charged particle beams.
Citation: Alexandre Mouton. Expansion of a singularly perturbed equation with a two-scale converging convection term. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1447-1473. doi: 10.3934/dcdss.2016058
References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084.

[2]

M. Bostan, The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime, Asymptot. Anal., 61 (2009), 91-123.

[3]

M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations, 249 (2010), 1620-1663. doi: 10.1016/j.jde.2010.07.010.

[4]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, 183, Springer, New-York, 2013. doi: 10.1007/978-1-4614-5975-0.

[5]

A. Brizard, Nonlinear Gyrokinetic Tokamak Physics, Ph.D thesis, Princeton University, 1990.

[6]

A. Brizard and T.-S. Hahm, Foundations of nonlinear gyrokinetic theory, Rev. Mod. Phys., 79 (2007), 421-468. doi: 10.1103/RevModPhys.79.421.

[7]

P. Degond and P.-A. Raviart, On the paraxial approximation of the stationary Vlasov-Maxwell system, Math. Model. Meth. Appl. Sci., 3 (1993), 513-562. doi: 10.1142/S0218202593000278.

[8]

D.-H. Dubin, J.-A. Krommes, C. Oberman and W.-W. Lee, Nonlinear gyrokinetic equations, Phys. Fluids, 26 (1983), 3524-3535. doi: 10.1063/1.864113.

[9]

F. Filbet and É. Sonnendrücker, Modeling and numerical simulation of space charge dominated beams in the paraxial approximation, Math. Model. Meth. Appl. Sci., 16 (2006), 763-791. doi: 10.1142/S0218202506001340.

[10]

E. Frénod, M. Gutnic and S. Hirstoaga, First order two-scale particle-in-cell numerical method for the Vlasov equation, ESAIM Proc., 38 (2012), 348-360. doi: 10.1051/proc/201238019.

[11]

E. Frnod and A. Mouton, Two-dimensional Finite Larmor Radius approximation in canonical gyrokinetic coordinates, J. Pure Appl. Math. Adv. Appl., 4 (2010), 135-169.

[12]

E. Frénod, P.-A. Raviart and E. Sonnendrücker, Two-scale expansion of a singularly perturbed convection equation, J. Math. Pures Appl., 80 (2001), 815-843. doi: 10.1016/S0021-7824(01)01215-6.

[13]

E. Frénod, F. Salvarani and E. Sonnendrücker, Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method, Math. Models Methods Appl. Sci., 19 (2009), 175-197. doi: 10.1142/S0218202509003395.

[14]

E. Frénod and E. Sonnendrücker, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic field, Asymptot. Anal., 18 (1998), 193-213.

[15]

E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation, SIAM J. Math. Anal., 32 (2001), 1227-1247. doi: 10.1137/S0036141099364243.

[16]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field, J. Math. Pures Appl., 78 (1999), 791-817. doi: 10.1016/S0021-7824(99)00021-5.

[17]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field in quasineutral regime, Math. Models Methods Appl. Sci., 13 (2003), 661-714. doi: 10.1142/S0218202503002647.

[18]

D. Han-Kwan, Effect of the polarization drift in a strongly magnetized plasma, ESAIM Math. Model. Numer. Anal., 46 (2012), 929-947. doi: 10.1051/m2an/2011068.

[19]

D. Han-Kwan, On the confinement of a tokamak plasma, SIAM J. Math. Anal., 42 (2010), 2337-2367. doi: 10.1137/090774574.

[20]

D. Han-Kwan, The three-dimensional finite Larmor radius approximation, Asymptot. Anal., 66 (2010), 9-33.

[21]

E. Kamke, Zue Theorie der Systeme gewühnlicher Differentialgleichungen, Acta Math., 58 (1932), 57-85. doi: 10.1007/BF02547774.

[22]

H. Knobloch, An existence theorem for periodic solutions of nonlinear ordinary differential equations, Michigan Math. J., 9 (1962), 303-309.

[23]

W.-W. Lee, Gyrokinetic approach in particle simulation, Phys. Fluids, 26 (1983), 555-562.

[24]

W.-W. Lee, Gyrokinetic particle simulation model, J. Comp. Phys., 72 (1987), 243-269.

[25]

R.-G. Littlejohn, A guiding center Hamiltonian: A new approach, J. Math. Phys., 20 (1979), 2445-2458. doi: 10.1063/1.524053.

[26]

A. Mouton, Approximation Multi-échelles de L'équation de Vlasov, Ph.D thesis, Universitéde Strasbourg, 2009.

[27]

A. Mouton, Two-scale semi-lagrangian simulation of a charged particle beam in a periodic focusing channel, Kinet. Relat. Models, 2 (2009), 251-274. doi: 10.3934/krm.2009.2.251.

[28]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623. doi: 10.1137/0520043.

[29]

K. Schmitt, Periodic Solutions of Nonlinear Differential Systems, J. Math. Anal. Appl., 40 (1972), 174-182.

show all references

References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084.

[2]

M. Bostan, The Vlasov-Poisson system with strong external magnetic field. Finite Larmor radius regime, Asymptot. Anal., 61 (2009), 91-123.

[3]

M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations, 249 (2010), 1620-1663. doi: 10.1016/j.jde.2010.07.010.

[4]

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Mathematical Sciences, 183, Springer, New-York, 2013. doi: 10.1007/978-1-4614-5975-0.

[5]

A. Brizard, Nonlinear Gyrokinetic Tokamak Physics, Ph.D thesis, Princeton University, 1990.

[6]

A. Brizard and T.-S. Hahm, Foundations of nonlinear gyrokinetic theory, Rev. Mod. Phys., 79 (2007), 421-468. doi: 10.1103/RevModPhys.79.421.

[7]

P. Degond and P.-A. Raviart, On the paraxial approximation of the stationary Vlasov-Maxwell system, Math. Model. Meth. Appl. Sci., 3 (1993), 513-562. doi: 10.1142/S0218202593000278.

[8]

D.-H. Dubin, J.-A. Krommes, C. Oberman and W.-W. Lee, Nonlinear gyrokinetic equations, Phys. Fluids, 26 (1983), 3524-3535. doi: 10.1063/1.864113.

[9]

F. Filbet and É. Sonnendrücker, Modeling and numerical simulation of space charge dominated beams in the paraxial approximation, Math. Model. Meth. Appl. Sci., 16 (2006), 763-791. doi: 10.1142/S0218202506001340.

[10]

E. Frénod, M. Gutnic and S. Hirstoaga, First order two-scale particle-in-cell numerical method for the Vlasov equation, ESAIM Proc., 38 (2012), 348-360. doi: 10.1051/proc/201238019.

[11]

E. Frnod and A. Mouton, Two-dimensional Finite Larmor Radius approximation in canonical gyrokinetic coordinates, J. Pure Appl. Math. Adv. Appl., 4 (2010), 135-169.

[12]

E. Frénod, P.-A. Raviart and E. Sonnendrücker, Two-scale expansion of a singularly perturbed convection equation, J. Math. Pures Appl., 80 (2001), 815-843. doi: 10.1016/S0021-7824(01)01215-6.

[13]

E. Frénod, F. Salvarani and E. Sonnendrücker, Long time simulation of a beam in a periodic focusing channel via a two-scale PIC-method, Math. Models Methods Appl. Sci., 19 (2009), 175-197. doi: 10.1142/S0218202509003395.

[14]

E. Frénod and E. Sonnendrücker, Homogenization of the Vlasov equation and of the Vlasov-Poisson system with a strong external magnetic field, Asymptot. Anal., 18 (1998), 193-213.

[15]

E. Frénod and E. Sonnendrücker, The finite Larmor radius approximation, SIAM J. Math. Anal., 32 (2001), 1227-1247. doi: 10.1137/S0036141099364243.

[16]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field, J. Math. Pures Appl., 78 (1999), 791-817. doi: 10.1016/S0021-7824(99)00021-5.

[17]

F. Golse and L. Saint-Raymond, The Vlasov-Poisson system with strong magnetic field in quasineutral regime, Math. Models Methods Appl. Sci., 13 (2003), 661-714. doi: 10.1142/S0218202503002647.

[18]

D. Han-Kwan, Effect of the polarization drift in a strongly magnetized plasma, ESAIM Math. Model. Numer. Anal., 46 (2012), 929-947. doi: 10.1051/m2an/2011068.

[19]

D. Han-Kwan, On the confinement of a tokamak plasma, SIAM J. Math. Anal., 42 (2010), 2337-2367. doi: 10.1137/090774574.

[20]

D. Han-Kwan, The three-dimensional finite Larmor radius approximation, Asymptot. Anal., 66 (2010), 9-33.

[21]

E. Kamke, Zue Theorie der Systeme gewühnlicher Differentialgleichungen, Acta Math., 58 (1932), 57-85. doi: 10.1007/BF02547774.

[22]

H. Knobloch, An existence theorem for periodic solutions of nonlinear ordinary differential equations, Michigan Math. J., 9 (1962), 303-309.

[23]

W.-W. Lee, Gyrokinetic approach in particle simulation, Phys. Fluids, 26 (1983), 555-562.

[24]

W.-W. Lee, Gyrokinetic particle simulation model, J. Comp. Phys., 72 (1987), 243-269.

[25]

R.-G. Littlejohn, A guiding center Hamiltonian: A new approach, J. Math. Phys., 20 (1979), 2445-2458. doi: 10.1063/1.524053.

[26]

A. Mouton, Approximation Multi-échelles de L'équation de Vlasov, Ph.D thesis, Universitéde Strasbourg, 2009.

[27]

A. Mouton, Two-scale semi-lagrangian simulation of a charged particle beam in a periodic focusing channel, Kinet. Relat. Models, 2 (2009), 251-274. doi: 10.3934/krm.2009.2.251.

[28]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623. doi: 10.1137/0520043.

[29]

K. Schmitt, Periodic Solutions of Nonlinear Differential Systems, J. Math. Anal. Appl., 40 (1972), 174-182.

[1]

Aurore Back, Emmanuel Frénod. Geometric two-scale convergence on manifold and applications to the Vlasov equation. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 223-241. doi: 10.3934/dcdss.2015.8.223

[2]

Robert E. Miller. Homogenization of time-dependent systems with Kelvin-Voigt damping by two-scale convergence. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 485-502. doi: 10.3934/dcds.1995.1.485

[3]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic two-scale convergence and Young measures. Networks and Heterogeneous Media, 2022, 17 (2) : 227-254. doi: 10.3934/nhm.2022004

[4]

Jingwei Hu, Shi Jin, Li Wang. An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach. Kinetic and Related Models, 2015, 8 (4) : 707-723. doi: 10.3934/krm.2015.8.707

[5]

Xu Yang, François Golse, Zhongyi Huang, Shi Jin. Numerical study of a domain decomposition method for a two-scale linear transport equation. Networks and Heterogeneous Media, 2006, 1 (1) : 143-166. doi: 10.3934/nhm.2006.1.143

[6]

Shi Jin, Xu Yang, Guangwei Yuan. A domain decomposition method for a two-scale transport equation with energy flux conserved at the interface. Kinetic and Related Models, 2008, 1 (1) : 65-84. doi: 10.3934/krm.2008.1.65

[7]

Alexander Mielke, Sina Reichelt, Marita Thomas. Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks and Heterogeneous Media, 2014, 9 (2) : 353-382. doi: 10.3934/nhm.2014.9.353

[8]

Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Bridging the gap between variational homogenization results and two-scale asymptotic averaging techniques on periodic network structures. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 223-250. doi: 10.3934/naco.2017016

[9]

Iryna Pankratova, Andrey Piatnitski. Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6 (1) : 111-126. doi: 10.3934/nhm.2011.6.111

[10]

Zhiqiang Yang, Junzhi Cui, Qiang Ma. The second-order two-scale computation for integrated heat transfer problem with conduction, convection and radiation in periodic porous materials. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 827-848. doi: 10.3934/dcdsb.2014.19.827

[11]

Fang Liu, Aihui Zhou. Localizations and parallelizations for two-scale finite element discretizations. Communications on Pure and Applied Analysis, 2007, 6 (3) : 757-773. doi: 10.3934/cpaa.2007.6.757

[12]

Ibrahima Faye, Emmanuel Frénod, Diaraf Seck. Two-Scale numerical simulation of sand transport problems. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 151-168. doi: 10.3934/dcdss.2015.8.151

[13]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[14]

Patrick Henning. Convergence of MsFEM approximations for elliptic, non-periodic homogenization problems. Networks and Heterogeneous Media, 2012, 7 (3) : 503-524. doi: 10.3934/nhm.2012.7.503

[15]

Alexandre Mouton. Two-scale semi-Lagrangian simulation of a charged particle beam in a periodic focusing channel. Kinetic and Related Models, 2009, 2 (2) : 251-274. doi: 10.3934/krm.2009.2.251

[16]

Marina Chugunova, Dmitry Pelinovsky. Two-pulse solutions in the fifth-order KdV equation: Rigorous theory and numerical approximations. Discrete and Continuous Dynamical Systems - B, 2007, 8 (4) : 773-800. doi: 10.3934/dcdsb.2007.8.773

[17]

Ioana Ciotir, Nicolas Forcadel, Wilfredo Salazar. Homogenization of a stochastic viscous transport equation. Evolution Equations and Control Theory, 2021, 10 (2) : 353-364. doi: 10.3934/eect.2020070

[18]

Vitali Vougalter, Vitaly Volpert. On the solvability conditions for the diffusion equation with convection terms. Communications on Pure and Applied Analysis, 2012, 11 (1) : 365-373. doi: 10.3934/cpaa.2012.11.365

[19]

Adrien Dekkers, Anna Rozanova-Pierrat, Vladimir Khodygo. Models of nonlinear acoustics viewed as approximations of the Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4231-4258. doi: 10.3934/dcds.2020179

[20]

Ugo Bessi. Viscous Aubry-Mather theory and the Vlasov equation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 379-420. doi: 10.3934/dcds.2014.34.379

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (137)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]