October  2016, 9(5): 1475-1492. doi: 10.3934/dcdss.2016059

Asymptotic analysis of a nonsimple thermoelastic rod

1. 

Ecole Nationale d'Ingénieurs de Bizerte, Université de Carthage, BP66, Campus Universitaire Menzel Abderrahman 7035

2. 

Faculté des Sciences de Bizerte, 7021 Zarzouna, Université de Carthage

Received  October 2014 Revised  July 2015 Published  October 2016

The asymptotic analysis of a one-dimensional nonsimple thermoelastic problem is considered in this paper. By a detailed spectral analysis, the asymptotic expressions for eigenvalues and eigenfunctions of the considered system are developed. It is shown that the eigenfunctions form a Riesz basis on the Hilbert space and the eigenvalues asymptotically fall on two branches. One branch is along the negative horizontal axis in the complex plane and the other branch is asymptotic to a vertical line that is parallel to the imaginary axis. This gives the spectrum-determined growth condition for the $C_0-$semigroup associated to the system, and consequently, the asymptotic and the exponential stability of the solutions are deduced. The approach developed in this paper confirms the already-existing results; furthermore, it can be extended to a larger field of applications such as coupled system of rod or beam with diffusion equation. The method will be illustrated by an example of thermoelastic beam equations with Dirichlet boundary conditions.
Citation: Moncef Aouadi, Taoufik Moulahi. Asymptotic analysis of a nonsimple thermoelastic rod. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1475-1492. doi: 10.3934/dcdss.2016059
References:
[1]

M. Aouadi, Stability aspects in a nonsimple thermoelastic diffusion problem, Appl. Anal., 92 (2013), 1816-1828. doi: 10.1080/00036811.2012.702341.

[2]

M. Aouadi, On uniform decay of a nonsimple thermoelastic bar with memory, J. Math. Anal. Appl., 402 (2013), 745-757. doi: 10.1016/j.jmaa.2013.01.059.

[3]

M. Ciarletta and D. Ieşan, Non-classical Elastic Solids, Pitman Research Notes in Mathematical Series, vol. 293, John Wiley & Sons, Inc., New York, 1993.

[4]

H. D. Fernàndez Sare, J. E. Munoz Rivera and R. Quintanilla, Decay of solutions in nonsimple thermoelastic bars, Int. J. Eng. Sci., 48 (2010), 1233-1241. doi: 10.1016/j.ijengsci.2010.04.014.

[5]

J. A. Gawinecki and J. Lazuka, Global solution on Cauchy problem in nonlinear non-simple thermoelastic materials, Proc. Appl. Math. Mech., 6 (2006), 371-372. doi: 10.1002/pamm.200610167.

[6]

M. Grasselli and M. Squassina, Exponential stability and singular limit for a linear thermoelastic plate with memory effects, Adv. Math. Sci. Appl., 16 (2006), 15-31.

[7]

A. E. Green and R. S. Rivlin, Multipolar continuum mechanics, Arch. Ration. Mech. Anal., 17 (1964), 113-147.

[8]

B. Z. Guo, Further result on a one-dimensional linear thermoelastic equation with Dirichlet-Dirichlet boundary condition, Aust. N. Z. Ind. Appl. Math., 43 (2002), 449-462.

[9]

B. Z. Guo and J. C. Chen, The first real eigenvalue of a one-dimensional linear thermoelastic system, J. Comput. Math. Appl., 38 (1999), 249-256. doi: 10.1016/S0898-1221(99)00303-X.

[10]

B. Z. Guo and S. P. Yung, Asymptotic behavior of the eigenfrequency of a one-dimensional linear thermoelastic system, J. Math. Anal. Appl., 213 (1997), 406-421. doi: 10.1006/jmaa.1997.5544.

[11]

B. Z. Guo and G. Q. Xu, Expansion of solution in terms of generalized eigenfunctions for a hyperbolic system with static boundary condition, J. Funct. Anal., 231 (2006), 245-268. doi: 10.1016/j.jfa.2005.02.006.

[12]

S. W. Hansen, Exponential energy decay in a linear thermoelastic rod, J. Math. Anal. Appl., 167 (1992), 429-442. doi: 10.1016/0022-247X(92)90217-2.

[13]

S. W. Hansen and B.-Y. Zhang, Boundary control of a linear thermoelastic beam, J. Math. Anal. Appl., 210 (1997), 182-205. doi: 10.1006/jmaa.1997.5437.

[14]

D. B. Henry, A. Perssinitto and O. Lopes, On the essential spectrum of a semigroup of thermoelasticity, Nonlinear Anal. TMA, 21 (1993), 65-75. doi: 10.1016/0362-546X(93)90178-U.

[15]

D. Ieşan, Thermoelastic Models of Continua, Kluwer Academic Publishers, Dordrecht, 2004. doi: 10.1007/978-1-4020-2310-1.

[16]

H. Kolakowski and J. Lazuka, The Cauchy problem for the system of partial differential equations describing nonsimple thermoelasticity, Appl. Math., 35 (2008), 97-105. doi: 10.4064/am35-1-6.

[17]

H. Leiva, A necessary and sufficient algebraic condition for the controllability of a thermoelastic plate equation, IMA J. Math. Control and Information, 20 (2003), 393-410. doi: 10.1093/imamci/20.4.393.

[18]

Z. Y. Liu and S. M. Zheng, Exponential stability of semigroup associated with thermoelastic system, Quart. Appl. Math., 51 (1993), 535-545.

[19]

Z. Y. Liu and S. M. Zheng, Uniform exponential stability and approximation in control of a thermoelastic system, SIAM J. Control & Optim., 32 (1994), 1226-1246. doi: 10.1137/S0363012991219006.

[20]

Yu. I. Lyubich and V. Q. Phóong, Asymptotic stability of linear differential equations in Banach spaces, Studia Math., 88 (1988), 37-42.

[21]

V. Pata and R. Quintanilla, On the decay of solutions in nonsimple elastic solids with memory, J. Math. Anal. Appl., 363 (2010), 19-28. doi: 10.1016/j.jmaa.2009.07.055.

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[23]

R. Quintanilla, Thermoelasticity without energy dissipation of nonsimple materials, Z. Angew. Math. Mech., 83 (2003), 172-180. doi: 10.1002/zamm.200310017.

[24]

Y. G. Wang and L. Yang, $L^p-L^q$ decay estimates for Cauchy problems of linear thermoelastic systems with second sound in three dimensions, Proc. Royal Soc. Edinb., Section A Mathematics, 136 (2006), 189-207. doi: 10.1017/S0308210500004510.

[25]

R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980.

show all references

References:
[1]

M. Aouadi, Stability aspects in a nonsimple thermoelastic diffusion problem, Appl. Anal., 92 (2013), 1816-1828. doi: 10.1080/00036811.2012.702341.

[2]

M. Aouadi, On uniform decay of a nonsimple thermoelastic bar with memory, J. Math. Anal. Appl., 402 (2013), 745-757. doi: 10.1016/j.jmaa.2013.01.059.

[3]

M. Ciarletta and D. Ieşan, Non-classical Elastic Solids, Pitman Research Notes in Mathematical Series, vol. 293, John Wiley & Sons, Inc., New York, 1993.

[4]

H. D. Fernàndez Sare, J. E. Munoz Rivera and R. Quintanilla, Decay of solutions in nonsimple thermoelastic bars, Int. J. Eng. Sci., 48 (2010), 1233-1241. doi: 10.1016/j.ijengsci.2010.04.014.

[5]

J. A. Gawinecki and J. Lazuka, Global solution on Cauchy problem in nonlinear non-simple thermoelastic materials, Proc. Appl. Math. Mech., 6 (2006), 371-372. doi: 10.1002/pamm.200610167.

[6]

M. Grasselli and M. Squassina, Exponential stability and singular limit for a linear thermoelastic plate with memory effects, Adv. Math. Sci. Appl., 16 (2006), 15-31.

[7]

A. E. Green and R. S. Rivlin, Multipolar continuum mechanics, Arch. Ration. Mech. Anal., 17 (1964), 113-147.

[8]

B. Z. Guo, Further result on a one-dimensional linear thermoelastic equation with Dirichlet-Dirichlet boundary condition, Aust. N. Z. Ind. Appl. Math., 43 (2002), 449-462.

[9]

B. Z. Guo and J. C. Chen, The first real eigenvalue of a one-dimensional linear thermoelastic system, J. Comput. Math. Appl., 38 (1999), 249-256. doi: 10.1016/S0898-1221(99)00303-X.

[10]

B. Z. Guo and S. P. Yung, Asymptotic behavior of the eigenfrequency of a one-dimensional linear thermoelastic system, J. Math. Anal. Appl., 213 (1997), 406-421. doi: 10.1006/jmaa.1997.5544.

[11]

B. Z. Guo and G. Q. Xu, Expansion of solution in terms of generalized eigenfunctions for a hyperbolic system with static boundary condition, J. Funct. Anal., 231 (2006), 245-268. doi: 10.1016/j.jfa.2005.02.006.

[12]

S. W. Hansen, Exponential energy decay in a linear thermoelastic rod, J. Math. Anal. Appl., 167 (1992), 429-442. doi: 10.1016/0022-247X(92)90217-2.

[13]

S. W. Hansen and B.-Y. Zhang, Boundary control of a linear thermoelastic beam, J. Math. Anal. Appl., 210 (1997), 182-205. doi: 10.1006/jmaa.1997.5437.

[14]

D. B. Henry, A. Perssinitto and O. Lopes, On the essential spectrum of a semigroup of thermoelasticity, Nonlinear Anal. TMA, 21 (1993), 65-75. doi: 10.1016/0362-546X(93)90178-U.

[15]

D. Ieşan, Thermoelastic Models of Continua, Kluwer Academic Publishers, Dordrecht, 2004. doi: 10.1007/978-1-4020-2310-1.

[16]

H. Kolakowski and J. Lazuka, The Cauchy problem for the system of partial differential equations describing nonsimple thermoelasticity, Appl. Math., 35 (2008), 97-105. doi: 10.4064/am35-1-6.

[17]

H. Leiva, A necessary and sufficient algebraic condition for the controllability of a thermoelastic plate equation, IMA J. Math. Control and Information, 20 (2003), 393-410. doi: 10.1093/imamci/20.4.393.

[18]

Z. Y. Liu and S. M. Zheng, Exponential stability of semigroup associated with thermoelastic system, Quart. Appl. Math., 51 (1993), 535-545.

[19]

Z. Y. Liu and S. M. Zheng, Uniform exponential stability and approximation in control of a thermoelastic system, SIAM J. Control & Optim., 32 (1994), 1226-1246. doi: 10.1137/S0363012991219006.

[20]

Yu. I. Lyubich and V. Q. Phóong, Asymptotic stability of linear differential equations in Banach spaces, Studia Math., 88 (1988), 37-42.

[21]

V. Pata and R. Quintanilla, On the decay of solutions in nonsimple elastic solids with memory, J. Math. Anal. Appl., 363 (2010), 19-28. doi: 10.1016/j.jmaa.2009.07.055.

[22]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[23]

R. Quintanilla, Thermoelasticity without energy dissipation of nonsimple materials, Z. Angew. Math. Mech., 83 (2003), 172-180. doi: 10.1002/zamm.200310017.

[24]

Y. G. Wang and L. Yang, $L^p-L^q$ decay estimates for Cauchy problems of linear thermoelastic systems with second sound in three dimensions, Proc. Royal Soc. Edinb., Section A Mathematics, 136 (2006), 189-207. doi: 10.1017/S0308210500004510.

[25]

R. M. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, 1980.

[1]

Ramon Quintanilla, Reinhard Racke. Stability in thermoelasticity of type III. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 383-400. doi: 10.3934/dcdsb.2003.3.383

[2]

Margareth S. Alves, Rodrigo N. Monteiro. Stability of non-classical thermoelasticity mixture problems. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4879-4898. doi: 10.3934/cpaa.2020216

[3]

Farah Abdallah, Denis Mercier, Serge Nicaise. Spectral analysis and exponential or polynomial stability of some indefinite sign damped problems. Evolution Equations and Control Theory, 2013, 2 (1) : 1-33. doi: 10.3934/eect.2013.2.1

[4]

Belkacem Said-Houari, Radouane Rahali. Asymptotic behavior of the solution to the Cauchy problem for the Timoshenko system in thermoelasticity of type III. Evolution Equations and Control Theory, 2013, 2 (2) : 423-440. doi: 10.3934/eect.2013.2.423

[5]

Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551

[6]

Ramon Quintanilla. Structural stability and continuous dependence of solutions of thermoelasticity of type III. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 463-470. doi: 10.3934/dcdsb.2001.1.463

[7]

Godofredo Iommi, Bartłomiej Skorulski. Multifractal analysis for the exponential family. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 857-869. doi: 10.3934/dcds.2006.16.857

[8]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157

[9]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[10]

Toufik Bentrcia, Abdelaziz Mennouni. On the asymptotic stability of a Bresse system with two fractional damping terms: Theoretical and numerical analysis. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022090

[11]

Nanhee Kim. Uniqueness and Hölder type stability of continuation for the linear thermoelasticity system with residual stress. Evolution Equations and Control Theory, 2013, 2 (4) : 679-693. doi: 10.3934/eect.2013.2.679

[12]

Monica Conti, Lorenzo Liverani, Vittorino Pata. Thermoelasticity with antidissipation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2173-2188. doi: 10.3934/dcdss.2022040

[13]

Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219

[14]

Genghua Li, Shengjie Li, Manxue You. Asymptotic analysis of scalarization functions and applications. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022046

[15]

Ebenezer Bonyah, Fatmawati. An analysis of tuberculosis model with exponential decay law operator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2101-2117. doi: 10.3934/dcdss.2021057

[16]

Marc Chamberland, Anna Cima, Armengol Gasull, Francesc Mañosas. Characterizing asymptotic stability with Dulac functions. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 59-76. doi: 10.3934/dcds.2007.17.59

[17]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic and Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673

[18]

Sigurdur Freyr Hafstein. A constructive converse Lyapunov theorem on exponential stability. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 657-678. doi: 10.3934/dcds.2004.10.657

[19]

Hichem Kasri, Amar Heminna. Exponential stability of a coupled system with Wentzell conditions. Evolution Equations and Control Theory, 2016, 5 (2) : 235-250. doi: 10.3934/eect.2016003

[20]

Litan Yan, Wenyi Pei, Zhenzhong Zhang. Exponential stability of SDEs driven by fBm with Markovian switching. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6467-6483. doi: 10.3934/dcds.2019280

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (185)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]