October  2016, 9(5): 1565-1574. doi: 10.3934/dcdss.2016063

About interface conditions for coupling hydrostatic and nonhydrostatic Navier-Stokes flows

1. 

Univ. Grenoble Alpes, LJK, BP 53, 38041 Grenoble cedex 9, France

2. 

Inria and Institut Montpelliérain Alexander Grothendieck, Team LEM0N, Bat 5 - CC05 017, 860 rue Saint-Priest, 34095 Montpellier Cedex 5, France

Received  June 2015 Revised  August 2015 Published  October 2016

In this work we are interested in the search of interface conditions to couple hydrostatic and nonhydrostatic ocean models. To this aim, we consider simplified systems and use a time discretization to handle linear equations. We recall the links between the two models (with the particular role of the aspect ratio $\delta=H/L\ll 1$) and introduce an iterative method based on the Schwarz algorithm (widely used in domain decomposition methods).
    The convergence of this method depends strongly on the choice of interface conditions: this is why we look for exact absorbing conditions and their approximations in order to provide tractable and efficient coupling algorithms.
Citation: Eric Blayo, Antoine Rousseau. About interface conditions for coupling hydrostatic and nonhydrostatic Navier-Stokes flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1565-1574. doi: 10.3934/dcdss.2016063
References:
[1]

E. Audusse, P. Dreyfuss and B. Merlet, Schwarz waveform relaxation for primitive equations of the ocean,, SIAM J. Sci. Comput., 32 (2010), 2908.  doi: 10.1137/090770059.  Google Scholar

[2]

P. Azerad and F. Guillen, Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluids dynamics,, SIAM J. Math. Anal., 33 (2001), 847.  doi: 10.1137/S0036141000375962.  Google Scholar

[3]

E. Blayo, D. Cherel and A. Rousseau, Towards optimized Schwarz methods for the Navier-Stokes equations,, J. Sci. Comput., 66 (2016), 275.  doi: 10.1007/s10915-015-0020-9.  Google Scholar

[4]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Ann. of Math., 166 (2007), 245.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[5]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves,, Math. Comput., 31 (1977), 629.  doi: 10.1090/S0025-5718-1977-0436612-4.  Google Scholar

[6]

O. B. Fringer, M. Gerritsen and R. Street, An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal-ocean simulator,, Ocean Modell., 14 (2006), 139.  doi: 10.1016/j.ocemod.2006.03.006.  Google Scholar

[7]

O. B. Fringer, J. C. McWilliams and R. L. Street, A new hybrid model for coastal simulations,, Oceanography, 19 (2006), 46.  doi: 10.5670/oceanog.2006.91.  Google Scholar

[8]

P. C. Gallacher, D. A. Hebert and M. R. Schaferkotter, Nesting a nonhydrostatic model in a hydrostatic model: The boundary interface,, Ocean Modell., 40 (2011), 190.  doi: 10.1016/j.ocemod.2011.08.006.  Google Scholar

[9]

M. J. Gander, Schwarz methods over the course of time,, Elec. Trans. Num. Anal., 31 (2008), 228.   Google Scholar

[10]

G. Kobelkov, Existence of a solution 'in the large' for the 3D large-scale ocean dynamics equations,, C. R. Math. Acad. Sci. Paris, 343 (2006), 283.  doi: 10.1016/j.crma.2006.04.020.  Google Scholar

[11]

J.-L. Lions, R. Temam and S. Wang, On the equations of the large-scale ocean,, Nonlinearity, 5 (1992), 1007.  doi: 10.1088/0951-7715/5/5/002.  Google Scholar

[12]

C. Lucas and A. Rousseau, New developments and cosine effect in the viscous shallow water and quasi-geostrophic equations,, Multiscale Model. Simul., 7 (2008), 796.  doi: 10.1137/070705453.  Google Scholar

[13]

J. Marshall, A. Adcroft, C. Hill, L. Perelman and C. Heisey, A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers,, J. Geophys. Res. Ocean., 102 (1997), 5753.  doi: 10.1029/96JC02775.  Google Scholar

[14]

J. Marshall, C. Hill, L. Perelman and A. Adcroft, Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling,, J. Geophys. Res. Ocean., 102 (1997), 5733.  doi: 10.1029/96JC02776.  Google Scholar

[15]

F. Nataf and F. Rogier, Factorization of the convection-diffusion operator and the Schwarz algorithm,, Math. Models and Methods in Applied Sciences, 5 (1995), 67.  doi: 10.1142/S021820259500005X.  Google Scholar

[16]

F. Nataf, F. Rogier and E. de Sturler, Domain decomposition methods for fluid dynamics,, in Navier-Stokes Equations and Related Nonlinear Problems (ed. A. Sequeira), (1995), 367.   Google Scholar

[17]

M. F. Peeters, W. G. Habashi and E. G. Dueck, Finite element streamfunction - vorticity solutions of the incompressible Navier-Stokes equations,, Int. J. Num. Methods in Fluids, 7 (2008), 17.   Google Scholar

[18]

M. Petcu, R. Temam and M. Ziane, Some mathematical problems in fluid dynamics,, in Handbook of Numerical Analysis (eds. P.G. Ciarlet), 14 (2009), 577.  doi: 10.1016/S1570-8659(08)00212-3.  Google Scholar

[19]

A. Rousseau, R. Temam and J. Tribbia, Boundary value problems for the inviscid primitive equations in limited domain,, in Handbook of Numerical Analysis, 14 (2008), 481.  doi: 10.1016/S1570-8659(08)00211-1.  Google Scholar

show all references

References:
[1]

E. Audusse, P. Dreyfuss and B. Merlet, Schwarz waveform relaxation for primitive equations of the ocean,, SIAM J. Sci. Comput., 32 (2010), 2908.  doi: 10.1137/090770059.  Google Scholar

[2]

P. Azerad and F. Guillen, Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluids dynamics,, SIAM J. Math. Anal., 33 (2001), 847.  doi: 10.1137/S0036141000375962.  Google Scholar

[3]

E. Blayo, D. Cherel and A. Rousseau, Towards optimized Schwarz methods for the Navier-Stokes equations,, J. Sci. Comput., 66 (2016), 275.  doi: 10.1007/s10915-015-0020-9.  Google Scholar

[4]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Ann. of Math., 166 (2007), 245.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[5]

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves,, Math. Comput., 31 (1977), 629.  doi: 10.1090/S0025-5718-1977-0436612-4.  Google Scholar

[6]

O. B. Fringer, M. Gerritsen and R. Street, An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal-ocean simulator,, Ocean Modell., 14 (2006), 139.  doi: 10.1016/j.ocemod.2006.03.006.  Google Scholar

[7]

O. B. Fringer, J. C. McWilliams and R. L. Street, A new hybrid model for coastal simulations,, Oceanography, 19 (2006), 46.  doi: 10.5670/oceanog.2006.91.  Google Scholar

[8]

P. C. Gallacher, D. A. Hebert and M. R. Schaferkotter, Nesting a nonhydrostatic model in a hydrostatic model: The boundary interface,, Ocean Modell., 40 (2011), 190.  doi: 10.1016/j.ocemod.2011.08.006.  Google Scholar

[9]

M. J. Gander, Schwarz methods over the course of time,, Elec. Trans. Num. Anal., 31 (2008), 228.   Google Scholar

[10]

G. Kobelkov, Existence of a solution 'in the large' for the 3D large-scale ocean dynamics equations,, C. R. Math. Acad. Sci. Paris, 343 (2006), 283.  doi: 10.1016/j.crma.2006.04.020.  Google Scholar

[11]

J.-L. Lions, R. Temam and S. Wang, On the equations of the large-scale ocean,, Nonlinearity, 5 (1992), 1007.  doi: 10.1088/0951-7715/5/5/002.  Google Scholar

[12]

C. Lucas and A. Rousseau, New developments and cosine effect in the viscous shallow water and quasi-geostrophic equations,, Multiscale Model. Simul., 7 (2008), 796.  doi: 10.1137/070705453.  Google Scholar

[13]

J. Marshall, A. Adcroft, C. Hill, L. Perelman and C. Heisey, A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers,, J. Geophys. Res. Ocean., 102 (1997), 5753.  doi: 10.1029/96JC02775.  Google Scholar

[14]

J. Marshall, C. Hill, L. Perelman and A. Adcroft, Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling,, J. Geophys. Res. Ocean., 102 (1997), 5733.  doi: 10.1029/96JC02776.  Google Scholar

[15]

F. Nataf and F. Rogier, Factorization of the convection-diffusion operator and the Schwarz algorithm,, Math. Models and Methods in Applied Sciences, 5 (1995), 67.  doi: 10.1142/S021820259500005X.  Google Scholar

[16]

F. Nataf, F. Rogier and E. de Sturler, Domain decomposition methods for fluid dynamics,, in Navier-Stokes Equations and Related Nonlinear Problems (ed. A. Sequeira), (1995), 367.   Google Scholar

[17]

M. F. Peeters, W. G. Habashi and E. G. Dueck, Finite element streamfunction - vorticity solutions of the incompressible Navier-Stokes equations,, Int. J. Num. Methods in Fluids, 7 (2008), 17.   Google Scholar

[18]

M. Petcu, R. Temam and M. Ziane, Some mathematical problems in fluid dynamics,, in Handbook of Numerical Analysis (eds. P.G. Ciarlet), 14 (2009), 577.  doi: 10.1016/S1570-8659(08)00212-3.  Google Scholar

[19]

A. Rousseau, R. Temam and J. Tribbia, Boundary value problems for the inviscid primitive equations in limited domain,, in Handbook of Numerical Analysis, 14 (2008), 481.  doi: 10.1016/S1570-8659(08)00211-1.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[4]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[5]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[6]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[7]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[8]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[9]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[10]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[11]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[12]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[13]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[14]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[15]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[16]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[17]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[18]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[19]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[20]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]