-
Previous Article
Homogenization: In mathematics or physics?
- DCDS-S Home
- This Issue
-
Next Article
Rate of convergence for a multi-scale model of dilute emulsions with non-uniform surface tension
About interface conditions for coupling hydrostatic and nonhydrostatic Navier-Stokes flows
1. | Univ. Grenoble Alpes, LJK, BP 53, 38041 Grenoble cedex 9, France |
2. | Inria and Institut Montpelliérain Alexander Grothendieck, Team LEM0N, Bat 5 - CC05 017, 860 rue Saint-Priest, 34095 Montpellier Cedex 5, France |
  The convergence of this method depends strongly on the choice of interface conditions: this is why we look for exact absorbing conditions and their approximations in order to provide tractable and efficient coupling algorithms.
References:
[1] |
E. Audusse, P. Dreyfuss and B. Merlet, Schwarz waveform relaxation for primitive equations of the ocean,, SIAM J. Sci. Comput., 32 (2010), 2908.
doi: 10.1137/090770059. |
[2] |
P. Azerad and F. Guillen, Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluids dynamics,, SIAM J. Math. Anal., 33 (2001), 847.
doi: 10.1137/S0036141000375962. |
[3] |
E. Blayo, D. Cherel and A. Rousseau, Towards optimized Schwarz methods for the Navier-Stokes equations,, J. Sci. Comput., 66 (2016), 275.
doi: 10.1007/s10915-015-0020-9. |
[4] |
C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Ann. of Math., 166 (2007), 245.
doi: 10.4007/annals.2007.166.245. |
[5] |
B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves,, Math. Comput., 31 (1977), 629.
doi: 10.1090/S0025-5718-1977-0436612-4. |
[6] |
O. B. Fringer, M. Gerritsen and R. Street, An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal-ocean simulator,, Ocean Modell., 14 (2006), 139.
doi: 10.1016/j.ocemod.2006.03.006. |
[7] |
O. B. Fringer, J. C. McWilliams and R. L. Street, A new hybrid model for coastal simulations,, Oceanography, 19 (2006), 46.
doi: 10.5670/oceanog.2006.91. |
[8] |
P. C. Gallacher, D. A. Hebert and M. R. Schaferkotter, Nesting a nonhydrostatic model in a hydrostatic model: The boundary interface,, Ocean Modell., 40 (2011), 190.
doi: 10.1016/j.ocemod.2011.08.006. |
[9] |
M. J. Gander, Schwarz methods over the course of time,, Elec. Trans. Num. Anal., 31 (2008), 228.
|
[10] |
G. Kobelkov, Existence of a solution 'in the large' for the 3D large-scale ocean dynamics equations,, C. R. Math. Acad. Sci. Paris, 343 (2006), 283.
doi: 10.1016/j.crma.2006.04.020. |
[11] |
J.-L. Lions, R. Temam and S. Wang, On the equations of the large-scale ocean,, Nonlinearity, 5 (1992), 1007.
doi: 10.1088/0951-7715/5/5/002. |
[12] |
C. Lucas and A. Rousseau, New developments and cosine effect in the viscous shallow water and quasi-geostrophic equations,, Multiscale Model. Simul., 7 (2008), 796.
doi: 10.1137/070705453. |
[13] |
J. Marshall, A. Adcroft, C. Hill, L. Perelman and C. Heisey, A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers,, J. Geophys. Res. Ocean., 102 (1997), 5753.
doi: 10.1029/96JC02775. |
[14] |
J. Marshall, C. Hill, L. Perelman and A. Adcroft, Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling,, J. Geophys. Res. Ocean., 102 (1997), 5733.
doi: 10.1029/96JC02776. |
[15] |
F. Nataf and F. Rogier, Factorization of the convection-diffusion operator and the Schwarz algorithm,, Math. Models and Methods in Applied Sciences, 5 (1995), 67.
doi: 10.1142/S021820259500005X. |
[16] |
F. Nataf, F. Rogier and E. de Sturler, Domain decomposition methods for fluid dynamics,, in Navier-Stokes Equations and Related Nonlinear Problems (ed. A. Sequeira), (1995), 367.
|
[17] |
M. F. Peeters, W. G. Habashi and E. G. Dueck, Finite element streamfunction - vorticity solutions of the incompressible Navier-Stokes equations,, Int. J. Num. Methods in Fluids, 7 (2008), 17. Google Scholar |
[18] |
M. Petcu, R. Temam and M. Ziane, Some mathematical problems in fluid dynamics,, in Handbook of Numerical Analysis (eds. P.G. Ciarlet), 14 (2009), 577.
doi: 10.1016/S1570-8659(08)00212-3. |
[19] |
A. Rousseau, R. Temam and J. Tribbia, Boundary value problems for the inviscid primitive equations in limited domain,, in Handbook of Numerical Analysis, 14 (2008), 481.
doi: 10.1016/S1570-8659(08)00211-1. |
show all references
References:
[1] |
E. Audusse, P. Dreyfuss and B. Merlet, Schwarz waveform relaxation for primitive equations of the ocean,, SIAM J. Sci. Comput., 32 (2010), 2908.
doi: 10.1137/090770059. |
[2] |
P. Azerad and F. Guillen, Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluids dynamics,, SIAM J. Math. Anal., 33 (2001), 847.
doi: 10.1137/S0036141000375962. |
[3] |
E. Blayo, D. Cherel and A. Rousseau, Towards optimized Schwarz methods for the Navier-Stokes equations,, J. Sci. Comput., 66 (2016), 275.
doi: 10.1007/s10915-015-0020-9. |
[4] |
C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Ann. of Math., 166 (2007), 245.
doi: 10.4007/annals.2007.166.245. |
[5] |
B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves,, Math. Comput., 31 (1977), 629.
doi: 10.1090/S0025-5718-1977-0436612-4. |
[6] |
O. B. Fringer, M. Gerritsen and R. Street, An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal-ocean simulator,, Ocean Modell., 14 (2006), 139.
doi: 10.1016/j.ocemod.2006.03.006. |
[7] |
O. B. Fringer, J. C. McWilliams and R. L. Street, A new hybrid model for coastal simulations,, Oceanography, 19 (2006), 46.
doi: 10.5670/oceanog.2006.91. |
[8] |
P. C. Gallacher, D. A. Hebert and M. R. Schaferkotter, Nesting a nonhydrostatic model in a hydrostatic model: The boundary interface,, Ocean Modell., 40 (2011), 190.
doi: 10.1016/j.ocemod.2011.08.006. |
[9] |
M. J. Gander, Schwarz methods over the course of time,, Elec. Trans. Num. Anal., 31 (2008), 228.
|
[10] |
G. Kobelkov, Existence of a solution 'in the large' for the 3D large-scale ocean dynamics equations,, C. R. Math. Acad. Sci. Paris, 343 (2006), 283.
doi: 10.1016/j.crma.2006.04.020. |
[11] |
J.-L. Lions, R. Temam and S. Wang, On the equations of the large-scale ocean,, Nonlinearity, 5 (1992), 1007.
doi: 10.1088/0951-7715/5/5/002. |
[12] |
C. Lucas and A. Rousseau, New developments and cosine effect in the viscous shallow water and quasi-geostrophic equations,, Multiscale Model. Simul., 7 (2008), 796.
doi: 10.1137/070705453. |
[13] |
J. Marshall, A. Adcroft, C. Hill, L. Perelman and C. Heisey, A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers,, J. Geophys. Res. Ocean., 102 (1997), 5753.
doi: 10.1029/96JC02775. |
[14] |
J. Marshall, C. Hill, L. Perelman and A. Adcroft, Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling,, J. Geophys. Res. Ocean., 102 (1997), 5733.
doi: 10.1029/96JC02776. |
[15] |
F. Nataf and F. Rogier, Factorization of the convection-diffusion operator and the Schwarz algorithm,, Math. Models and Methods in Applied Sciences, 5 (1995), 67.
doi: 10.1142/S021820259500005X. |
[16] |
F. Nataf, F. Rogier and E. de Sturler, Domain decomposition methods for fluid dynamics,, in Navier-Stokes Equations and Related Nonlinear Problems (ed. A. Sequeira), (1995), 367.
|
[17] |
M. F. Peeters, W. G. Habashi and E. G. Dueck, Finite element streamfunction - vorticity solutions of the incompressible Navier-Stokes equations,, Int. J. Num. Methods in Fluids, 7 (2008), 17. Google Scholar |
[18] |
M. Petcu, R. Temam and M. Ziane, Some mathematical problems in fluid dynamics,, in Handbook of Numerical Analysis (eds. P.G. Ciarlet), 14 (2009), 577.
doi: 10.1016/S1570-8659(08)00212-3. |
[19] |
A. Rousseau, R. Temam and J. Tribbia, Boundary value problems for the inviscid primitive equations in limited domain,, in Handbook of Numerical Analysis, 14 (2008), 481.
doi: 10.1016/S1570-8659(08)00211-1. |
[1] |
Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113 |
[2] |
Sylvie Monniaux. Various boundary conditions for Navier-Stokes equations in bounded Lipschitz domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1355-1369. doi: 10.3934/dcdss.2013.6.1355 |
[3] |
Matthew Paddick. The strong inviscid limit of the isentropic compressible Navier-Stokes equations with Navier boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2673-2709. doi: 10.3934/dcds.2016.36.2673 |
[4] |
Gung-Min Gie, Makram Hamouda, Roger Temam. Asymptotic analysis of the Navier-Stokes equations in a curved domain with a non-characteristic boundary. Networks & Heterogeneous Media, 2012, 7 (4) : 741-766. doi: 10.3934/nhm.2012.7.741 |
[5] |
Yoshihiro Shibata. On the local wellposedness of free boundary problem for the Navier-Stokes equations in an exterior domain. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1681-1721. doi: 10.3934/cpaa.2018081 |
[6] |
Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148 |
[7] |
Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325 |
[8] |
Franck Boyer, Pierre Fabrie. Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 219-250. doi: 10.3934/dcdsb.2007.7.219 |
[9] |
Evrad M. D. Ngom, Abdou Sène, Daniel Y. Le Roux. Boundary stabilization of the Navier-Stokes equations with feedback controller via a Galerkin method. Evolution Equations & Control Theory, 2014, 3 (1) : 147-166. doi: 10.3934/eect.2014.3.147 |
[10] |
Roberta Bianchini, Roberto Natalini. Convergence of a vector-BGK approximation for the incompressible Navier-Stokes equations. Kinetic & Related Models, 2019, 12 (1) : 133-158. doi: 10.3934/krm.2019006 |
[11] |
Michele Coti Zelati. Remarks on the approximation of the Navier-Stokes equations via the implicit Euler scheme. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2829-2838. doi: 10.3934/cpaa.2013.12.2829 |
[12] |
Yoshikazu Giga. A remark on a Liouville problem with boundary for the Stokes and the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1277-1289. doi: 10.3934/dcdss.2013.6.1277 |
[13] |
Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465 |
[14] |
Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141 |
[15] |
Hi Jun Choe, Hyea Hyun Kim, Do Wan Kim, Yongsik Kim. Meshless method for the stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 495-526. doi: 10.3934/dcdsb.2001.1.495 |
[16] |
Yinnian He, R. M.M. Mattheij. Reformed post-processing Galerkin method for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 369-387. doi: 10.3934/dcdsb.2007.8.369 |
[17] |
Kaitai Li, Yanren Hou. Fourier nonlinear Galerkin method for Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 497-524. doi: 10.3934/dcds.1996.2.497 |
[18] |
Hi Jun Choe, Do Wan Kim, Yongsik Kim. Meshfree method for the non-stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 17-39. doi: 10.3934/dcdsb.2006.6.17 |
[19] |
Takayuki Kubo, Ranmaru Matsui. On pressure stabilization method for nonstationary Navier-Stokes equations. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2283-2307. doi: 10.3934/cpaa.2018109 |
[20] |
Luigi C. Berselli. An elementary approach to the 3D Navier-Stokes equations with Navier boundary conditions: Existence and uniqueness of various classes of solutions in the flat boundary case.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 199-219. doi: 10.3934/dcdss.2010.3.199 |
2018 Impact Factor: 0.545
Tools
Metrics
Other articles
by authors
[Back to Top]