-
Previous Article
Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity
- DCDS-S Home
- This Issue
-
Next Article
Preface
Initial boundary value problem for two-dimensional viscous Boussinesq equations for MHD convection
1. | School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China |
References:
[1] | |
[2] |
H. Abidi and T. Hmidi, On the global well-posedness for Boussinesq system, J. Differential Equations, 233 (2007), 199-220.
doi: 10.1016/j.jde.2006.10.008. |
[3] |
D. Bian and G. Gui, On 2-D Boussinesq equations for MHD convection with stratification effects, J. Differential Equations, 261 (2016), 1669-1711.
doi: 10.1016/j.jde.2016.04.011. |
[4] |
D. Bian, G. Gui, B. Guo and Z. Xin, On the stability for the incompressible 2-D Boussinesq system for magnetohydrodynamics convection, preprint, 2015. |
[5] |
D. Bian and B. Guo, Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations, Kinetic and Related Models, 6 (2013), 481-503.
doi: 10.3934/krm.2013.6.481. |
[6] |
J. R. Cannon and E. Dibenedetto, The initial value problem for the Boussinesqs with data in $L^p$. In: Approximation Methods for Navier-Stokes Problems, Lecture Notes in Mathematics Volume, vol. 771, pp. 129-144. Springer, Berlin, 1980. |
[7] |
C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 226 (2011), 1803-1822.
doi: 10.1016/j.aim.2010.08.017. |
[8] |
D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-513.
doi: 10.1016/j.aim.2005.05.001. |
[9] |
Q. Chen, C. Miao and Z. Zhang, The Beale-Kato-Majda criterion for the 3D magnetohydrodynamics equations, Comm. Math. Phys., 275 (2007), 861-872.
doi: 10.1007/s00220-007-0319-y. |
[10] |
R. Danchin and M. Paicu, Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux, Bull. Soc. Math. France, 136 (2008), 261-309. |
[11] |
B. Desjardins and C. Le Bris, Remarks on a nonhomogeneous model of magnetohydrodynamics, Differential Integral Equations, 11 (1998), 377-394. |
[12] |
G. Duvaut and J.-L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal., 46 (1972), 241-279. |
[13] |
E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004. |
[14] |
E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.
doi: 10.1007/PL00000976. |
[15] |
J. F. Gerbeau and C. Le Bris, Existence of solution for a density-dependent magnetohydrodynamic equation, Adv. Differential Equations, 2 (1997), 427-452. |
[16] |
G. Gui, Global well-posedness of the two-dimensional incompressible magnetohydrodynamics system withvariable density and electrical conductivity, J. Functional Analysis, 267 (2014), 1488-1539.
doi: 10.1016/j.jfa.2014.06.002. |
[17] |
C. He and Z. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations, J. Functional Analysis, 227 (2005), 113-152.
doi: 10.1016/j.jfa.2005.06.009. |
[18] |
T. Hmidi and S. Keraani, On the global well-posedness of the Boussinesq system with zero viscosity, Indiana Univ. Math. J., 58 (2009), 1591-1618.
doi: 10.1512/iumj.2009.58.3590. |
[19] |
T. Hmidi and F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data, Ann. I. H. Poincare-AN., 27 (2010), 1227-1246.
doi: 10.1016/j.anihpc.2010.06.001. |
[20] |
T. Hmidi and F. Rousset, Global well-posedness for the Euler-Boussinesq system with axisymmetric data, J. Functional Analysis, 260 (2011), 745-796.
doi: 10.1016/j.jfa.2010.10.012. |
[21] |
T. Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12 (2005), 1-12. |
[22] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, 1968. |
[23] |
M.-J. Lai, R. Pan and K. Zhao, Initial boundary value problem for two-dimensional viscous Boussinesq equations, Arch. Ration. Mech. Anal., 199 (2011), 739-760.
doi: 10.1007/s00205-010-0357-z. |
[24] |
L. D. Laudau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed., Pergamon, New York, 1984. |
[25] |
D. Li and X. Xu, Global wellposedness of an inviscid 2D Boussinesq system with nonlinear thermal diffusivity, Dyn. Partial Differ. Equ., 10 (2013), 255-265.
doi: 10.4310/DPDE.2013.v10.n3.a2. |
[26] |
F. Lin, L. Xu and P. Zhang, Global small solutions of 2-D incompressible MHD system, J. Differential Equations, 259 (2015), 5440-5485, arXiv: 1302.5877v2.
doi: 10.1016/j.jde.2015.06.034. |
[27] |
F. Lin and P. Zhang, Global small solutions to an MHD-type system: The three-dimensional case, Comm. Pure Appl. Math., 67 (2014), 531-580.
doi: 10.1002/cpa.21506. |
[28] |
P. L. Lions, Mathematical Topics in Fluid Mechanics, vol. I, II. Oxford University Press, New York, 1996, 1998. |
[29] |
X. Ren, J. Wu, Z. Xiang and Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion, J. Functional Analysis, 267 (2014), 503-541.
doi: 10.1016/j.jfa.2014.04.020. |
[30] |
M. Sermange and R. Temam, Some mathematical questions related to the MHD equations}, Comm. Pure Appl. Math., 36 (1983), 635-664.
doi: 10.1002/cpa.3160360506. |
[31] |
W. von Wahl, Estimating $\nabla u$ by divu and curlu, Math. Methods Appl. Sci., 15 (1992), 123-143.
doi: 10.1002/mma.1670150206. |
[32] |
C. Wang and Z. Zhang, Global well-posedness for 2-D Boussinesq system with the temperature-density viscosity and thermal diffusivity, Adv. Math., 228 (2011), 43-62.
doi: 10.1016/j.aim.2011.05.008. |
show all references
References:
[1] | |
[2] |
H. Abidi and T. Hmidi, On the global well-posedness for Boussinesq system, J. Differential Equations, 233 (2007), 199-220.
doi: 10.1016/j.jde.2006.10.008. |
[3] |
D. Bian and G. Gui, On 2-D Boussinesq equations for MHD convection with stratification effects, J. Differential Equations, 261 (2016), 1669-1711.
doi: 10.1016/j.jde.2016.04.011. |
[4] |
D. Bian, G. Gui, B. Guo and Z. Xin, On the stability for the incompressible 2-D Boussinesq system for magnetohydrodynamics convection, preprint, 2015. |
[5] |
D. Bian and B. Guo, Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations, Kinetic and Related Models, 6 (2013), 481-503.
doi: 10.3934/krm.2013.6.481. |
[6] |
J. R. Cannon and E. Dibenedetto, The initial value problem for the Boussinesqs with data in $L^p$. In: Approximation Methods for Navier-Stokes Problems, Lecture Notes in Mathematics Volume, vol. 771, pp. 129-144. Springer, Berlin, 1980. |
[7] |
C. Cao and J. Wu, Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion, Adv. Math., 226 (2011), 1803-1822.
doi: 10.1016/j.aim.2010.08.017. |
[8] |
D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203 (2006), 497-513.
doi: 10.1016/j.aim.2005.05.001. |
[9] |
Q. Chen, C. Miao and Z. Zhang, The Beale-Kato-Majda criterion for the 3D magnetohydrodynamics equations, Comm. Math. Phys., 275 (2007), 861-872.
doi: 10.1007/s00220-007-0319-y. |
[10] |
R. Danchin and M. Paicu, Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux, Bull. Soc. Math. France, 136 (2008), 261-309. |
[11] |
B. Desjardins and C. Le Bris, Remarks on a nonhomogeneous model of magnetohydrodynamics, Differential Integral Equations, 11 (1998), 377-394. |
[12] |
G. Duvaut and J.-L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal., 46 (1972), 241-279. |
[13] |
E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, Oxford, 2004. |
[14] |
E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 3 (2001), 358-392.
doi: 10.1007/PL00000976. |
[15] |
J. F. Gerbeau and C. Le Bris, Existence of solution for a density-dependent magnetohydrodynamic equation, Adv. Differential Equations, 2 (1997), 427-452. |
[16] |
G. Gui, Global well-posedness of the two-dimensional incompressible magnetohydrodynamics system withvariable density and electrical conductivity, J. Functional Analysis, 267 (2014), 1488-1539.
doi: 10.1016/j.jfa.2014.06.002. |
[17] |
C. He and Z. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations, J. Functional Analysis, 227 (2005), 113-152.
doi: 10.1016/j.jfa.2005.06.009. |
[18] |
T. Hmidi and S. Keraani, On the global well-posedness of the Boussinesq system with zero viscosity, Indiana Univ. Math. J., 58 (2009), 1591-1618.
doi: 10.1512/iumj.2009.58.3590. |
[19] |
T. Hmidi and F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data, Ann. I. H. Poincare-AN., 27 (2010), 1227-1246.
doi: 10.1016/j.anihpc.2010.06.001. |
[20] |
T. Hmidi and F. Rousset, Global well-posedness for the Euler-Boussinesq system with axisymmetric data, J. Functional Analysis, 260 (2011), 745-796.
doi: 10.1016/j.jfa.2010.10.012. |
[21] |
T. Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12 (2005), 1-12. |
[22] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, 1968. |
[23] |
M.-J. Lai, R. Pan and K. Zhao, Initial boundary value problem for two-dimensional viscous Boussinesq equations, Arch. Ration. Mech. Anal., 199 (2011), 739-760.
doi: 10.1007/s00205-010-0357-z. |
[24] |
L. D. Laudau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed., Pergamon, New York, 1984. |
[25] |
D. Li and X. Xu, Global wellposedness of an inviscid 2D Boussinesq system with nonlinear thermal diffusivity, Dyn. Partial Differ. Equ., 10 (2013), 255-265.
doi: 10.4310/DPDE.2013.v10.n3.a2. |
[26] |
F. Lin, L. Xu and P. Zhang, Global small solutions of 2-D incompressible MHD system, J. Differential Equations, 259 (2015), 5440-5485, arXiv: 1302.5877v2.
doi: 10.1016/j.jde.2015.06.034. |
[27] |
F. Lin and P. Zhang, Global small solutions to an MHD-type system: The three-dimensional case, Comm. Pure Appl. Math., 67 (2014), 531-580.
doi: 10.1002/cpa.21506. |
[28] |
P. L. Lions, Mathematical Topics in Fluid Mechanics, vol. I, II. Oxford University Press, New York, 1996, 1998. |
[29] |
X. Ren, J. Wu, Z. Xiang and Z. Zhang, Global existence and decay of smooth solution for the 2-D MHD equations without magnetic diffusion, J. Functional Analysis, 267 (2014), 503-541.
doi: 10.1016/j.jfa.2014.04.020. |
[30] |
M. Sermange and R. Temam, Some mathematical questions related to the MHD equations}, Comm. Pure Appl. Math., 36 (1983), 635-664.
doi: 10.1002/cpa.3160360506. |
[31] |
W. von Wahl, Estimating $\nabla u$ by divu and curlu, Math. Methods Appl. Sci., 15 (1992), 123-143.
doi: 10.1002/mma.1670150206. |
[32] |
C. Wang and Z. Zhang, Global well-posedness for 2-D Boussinesq system with the temperature-density viscosity and thermal diffusivity, Adv. Math., 228 (2011), 43-62.
doi: 10.1016/j.aim.2011.05.008. |
[1] |
Yong Zeng. Existence and uniqueness of very weak solution of the MHD type system. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5617-5638. doi: 10.3934/dcds.2020240 |
[2] |
Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213 |
[3] |
Zijin Li, Xinghong Pan. One component regularity criteria for the axially symmetric MHD-Boussinesq system. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2333-2353. doi: 10.3934/dcds.2021192 |
[4] |
Hammadi Abidi, Taoufik Hmidi, Sahbi Keraani. On the global regularity of axisymmetric Navier-Stokes-Boussinesq system. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 737-756. doi: 10.3934/dcds.2011.29.737 |
[5] |
Meng Wang, Wendong Wang, Zhifei Zhang. On the uniqueness of weak solution for the 2-D Ericksen--Leslie system. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 919-941. doi: 10.3934/dcdsb.2016.21.919 |
[6] |
Yu Liu, Ting Zhang. On weak (measure-valued)-strong uniqueness for compressible MHD system with non-monotone pressure law. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2021307 |
[7] |
Igor Chueshov, Irena Lasiecka. Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 777-809. doi: 10.3934/dcds.2006.15.777 |
[8] |
Luigi C. Berselli, Jishan Fan. Logarithmic and improved regularity criteria for the 3D nematic liquid crystals models, Boussinesq system, and MHD equations in a bounded domain. Communications on Pure and Applied Analysis, 2015, 14 (2) : 637-655. doi: 10.3934/cpaa.2015.14.637 |
[9] |
Fei Chen, Boling Guo, Xiaoping Zhai. Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density. Kinetic and Related Models, 2019, 12 (1) : 37-58. doi: 10.3934/krm.2019002 |
[10] |
Jiahong Wu. Regularity results for weak solutions of the 3D MHD equations. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 543-556. doi: 10.3934/dcds.2004.10.543 |
[11] |
Tomoyuki Suzuki. Regularity criteria in weak spaces in terms of the pressure to the MHD equations. Conference Publications, 2011, 2011 (Special) : 1335-1343. doi: 10.3934/proc.2011.2011.1335 |
[12] |
Lvqiao Liu. On the global existence to Hall-MHD system. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022044 |
[13] |
Chunxiao Guo, Fan Cui, Yongqian Han. Global existence and uniqueness of the solution for the fractional Schrödinger-KdV-Burgers system. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1687-1699. doi: 10.3934/dcdss.2016070 |
[14] |
Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064 |
[15] |
Ming He, Jianwen Zhang. Global cylindrical solution to the compressible MHD equations in an exterior domain. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1841-1865. doi: 10.3934/cpaa.2009.8.1841 |
[16] |
Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure and Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319 |
[17] |
Toyohiko Aiki, Adrian Muntean. On uniqueness of a weak solution of one-dimensional concrete carbonation problem. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1345-1365. doi: 10.3934/dcds.2011.29.1345 |
[18] |
Yanxia Niu, Yinxia Wang, Qingnian Zhang. Decay rate of global solutions to three dimensional generalized MHD system. Evolution Equations and Control Theory, 2021, 10 (2) : 249-258. doi: 10.3934/eect.2020064 |
[19] |
Junxiong Jia, Jigen Peng, Kexue Li. On the decay and stability of global solutions to the 3D inhomogeneous MHD system. Communications on Pure and Applied Analysis, 2017, 16 (3) : 745-780. doi: 10.3934/cpaa.2017036 |
[20] |
Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]