-
Previous Article
The bifurcations of solitary and kink waves described by the Gardner equation
- DCDS-S Home
- This Issue
-
Next Article
Initial boundary value problem for two-dimensional viscous Boussinesq equations for MHD convection
Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity
1. | School of Mathematics and Computer Science, Fujian Normal University, Qishan Campus, Fuzhou 350117, China |
References:
[1] |
P. Bégout, Necessary conditions and sufficient conditions for global existence in the nonlinear Schrödinger equation,, Adv. Math. Sci. Appl., 12 (2002), 817.
|
[2] |
Y. Cao, Z. H. Musslimani and E. S. Titi, Nonlinear Schrödinger -Helmholtz equation as numerical regularization of the nonlinear Schrödinger equation,, Nonlinearity, 21 (2008), 879.
doi: 10.1088/0951-7715/21/5/001. |
[3] |
T. Cazenave, Semilinear Schrödinger Equations,, Courant Institute of Mathematical Sciences, 10 (2005).
doi: 10.1090/cln/010. |
[4] |
T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations,, Commun. Math. Phys., 85 (1982), 549.
doi: 10.1007/BF01403504. |
[5] |
G. Chen and J. Zhang, Remarks on global esistence for the supercritical nonlinear Schrödinger equation with a harmonic potential,, J. Math. Anal. Appl., 320 (2006), 591.
doi: 10.1016/j.jmaa.2005.07.008. |
[6] |
J. Chen and B. Guo, Strong instability of standing waves for a nonlocal Schrödinger equation,, Phys. D, 227 (2007), 142.
doi: 10.1016/j.physd.2007.01.004. |
[7] |
J. Chen, B. Guo and Y. Han, Sharp constant in nonlocal inequality and its applications to nonlocal Schrödinger equation with harmonic potential,, Commun. Math. Sci., 7 (2009), 549.
doi: 10.4310/CMS.2009.v7.n3.a2. |
[8] |
J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equation, I: The Cauchy problem,, J. Funct. Anal., 32 (1979), 33.
doi: 10.1016/0022-1236(79)90077-6. |
[9] |
R. T. Glassey, On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation,, J. Math. Phys., 18 (1977), 1794.
doi: 10.1063/1.523491. |
[10] |
E. P. Gross, Physics of many-particle systems,, (eds. E. Meeron), 1 (1966), 231. Google Scholar |
[11] |
P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, Part 1 and 2,, Ann. Inst. H. Poincare Anal. Non Lineaire, 1 (1984), 109.
|
[12] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics,, Vols. II, (2003). Google Scholar |
[13] |
M. Kurth, On the existence of infinitely many modes of a nonlocal nonlinear Schrödinger equation related to Dispersion-Managed solitons,, SIAM J. Math. Anal., 36 (2004), 967.
doi: 10.1137/S0036141003431530. |
[14] |
M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (1983), 567.
|
[15] |
M. Willem, Minimax Theorems,, Birkhäuser, (1996).
doi: 10.1007/978-1-4612-4146-1. |
[16] |
J. Zhang, Stability of attractive Bose-Einstein condensates,, J. Statistical Phys., 101 (2000), 731.
doi: 10.1023/A:1026437923987. |
show all references
References:
[1] |
P. Bégout, Necessary conditions and sufficient conditions for global existence in the nonlinear Schrödinger equation,, Adv. Math. Sci. Appl., 12 (2002), 817.
|
[2] |
Y. Cao, Z. H. Musslimani and E. S. Titi, Nonlinear Schrödinger -Helmholtz equation as numerical regularization of the nonlinear Schrödinger equation,, Nonlinearity, 21 (2008), 879.
doi: 10.1088/0951-7715/21/5/001. |
[3] |
T. Cazenave, Semilinear Schrödinger Equations,, Courant Institute of Mathematical Sciences, 10 (2005).
doi: 10.1090/cln/010. |
[4] |
T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations,, Commun. Math. Phys., 85 (1982), 549.
doi: 10.1007/BF01403504. |
[5] |
G. Chen and J. Zhang, Remarks on global esistence for the supercritical nonlinear Schrödinger equation with a harmonic potential,, J. Math. Anal. Appl., 320 (2006), 591.
doi: 10.1016/j.jmaa.2005.07.008. |
[6] |
J. Chen and B. Guo, Strong instability of standing waves for a nonlocal Schrödinger equation,, Phys. D, 227 (2007), 142.
doi: 10.1016/j.physd.2007.01.004. |
[7] |
J. Chen, B. Guo and Y. Han, Sharp constant in nonlocal inequality and its applications to nonlocal Schrödinger equation with harmonic potential,, Commun. Math. Sci., 7 (2009), 549.
doi: 10.4310/CMS.2009.v7.n3.a2. |
[8] |
J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equation, I: The Cauchy problem,, J. Funct. Anal., 32 (1979), 33.
doi: 10.1016/0022-1236(79)90077-6. |
[9] |
R. T. Glassey, On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation,, J. Math. Phys., 18 (1977), 1794.
doi: 10.1063/1.523491. |
[10] |
E. P. Gross, Physics of many-particle systems,, (eds. E. Meeron), 1 (1966), 231. Google Scholar |
[11] |
P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, Part 1 and 2,, Ann. Inst. H. Poincare Anal. Non Lineaire, 1 (1984), 109.
|
[12] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics,, Vols. II, (2003). Google Scholar |
[13] |
M. Kurth, On the existence of infinitely many modes of a nonlocal nonlinear Schrödinger equation related to Dispersion-Managed solitons,, SIAM J. Math. Anal., 36 (2004), 967.
doi: 10.1137/S0036141003431530. |
[14] |
M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (1983), 567.
|
[15] |
M. Willem, Minimax Theorems,, Birkhäuser, (1996).
doi: 10.1007/978-1-4612-4146-1. |
[16] |
J. Zhang, Stability of attractive Bose-Einstein condensates,, J. Statistical Phys., 101 (2000), 731.
doi: 10.1023/A:1026437923987. |
[1] |
João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321 |
[2] |
Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125 |
[3] |
Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287 |
[4] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[5] |
Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250 |
[6] |
Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033 |
[7] |
Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218 |
[8] |
Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020341 |
[9] |
Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002 |
[10] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
[11] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[12] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
[13] |
Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055 |
[14] |
Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385 |
[15] |
Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077 |
[16] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002 |
[17] |
Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020170 |
[18] |
Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455 |
[19] |
Philippe Laurençot, Christoph Walker. Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 677-694. doi: 10.3934/dcdss.2020360 |
[20] |
Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]