December  2016, 9(6): 1613-1628. doi: 10.3934/dcdss.2016066

Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity

1. 

School of Mathematics and Computer Science, Fujian Normal University, Qishan Campus, Fuzhou 350117, China

Received  June 2015 Revised  August 2016 Published  November 2016

In this paper, we first give a sharp variational characterization to the smallest positive constant $C_{VGN}$ in the following Variant Gagliardo-Nirenberg interpolation inequality: $$ \int_{\mathbb{R}^N\times\mathbb{R}^N}{{|u(x)|^p|u(y)|^p}\over{|x-y|^\alpha}}dxdy\leq C_{VGN} \|\nabla u\|_{L^2}^{N(p-2)+\alpha} \|u\|_{L^2}^{2p-(N(p-2)+\alpha)}, $$ where $u\in W^{1,2}(\mathbb{R}^N)$ and $N\geq 1$. Then we use this characterization to determine the sharp threshold of $\|\varphi_0\|_{L^2}$ such that the solution of $i\varphi_t = - \triangle \varphi + |x|^2\varphi - \varphi|\varphi|^{p-2}(|x|^{-\alpha}*|\varphi|^p)$ with initial condition $\varphi(0, x) = \varphi_0$ exists globally or blows up in a finite time. We also outline some results on the applications of $C_{VGN}$ to the Cauchy problem of $i\varphi_t = - \triangle \varphi - \varphi|\varphi|^{p-2}(|x|^{-\alpha}*|\varphi|^p)$.
Citation: Jianqing Chen. Sharp variational characterization and a Schrödinger equation with Hartree type nonlinearity. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1613-1628. doi: 10.3934/dcdss.2016066
References:
[1]

P. Bégout, Necessary conditions and sufficient conditions for global existence in the nonlinear Schrödinger equation,, Adv. Math. Sci. Appl., 12 (2002), 817.   Google Scholar

[2]

Y. Cao, Z. H. Musslimani and E. S. Titi, Nonlinear Schrödinger -Helmholtz equation as numerical regularization of the nonlinear Schrödinger equation,, Nonlinearity, 21 (2008), 879.  doi: 10.1088/0951-7715/21/5/001.  Google Scholar

[3]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Institute of Mathematical Sciences, 10 (2005).  doi: 10.1090/cln/010.  Google Scholar

[4]

T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations,, Commun. Math. Phys., 85 (1982), 549.  doi: 10.1007/BF01403504.  Google Scholar

[5]

G. Chen and J. Zhang, Remarks on global esistence for the supercritical nonlinear Schrödinger equation with a harmonic potential,, J. Math. Anal. Appl., 320 (2006), 591.  doi: 10.1016/j.jmaa.2005.07.008.  Google Scholar

[6]

J. Chen and B. Guo, Strong instability of standing waves for a nonlocal Schrödinger equation,, Phys. D, 227 (2007), 142.  doi: 10.1016/j.physd.2007.01.004.  Google Scholar

[7]

J. Chen, B. Guo and Y. Han, Sharp constant in nonlocal inequality and its applications to nonlocal Schrödinger equation with harmonic potential,, Commun. Math. Sci., 7 (2009), 549.  doi: 10.4310/CMS.2009.v7.n3.a2.  Google Scholar

[8]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equation, I: The Cauchy problem,, J. Funct. Anal., 32 (1979), 33.  doi: 10.1016/0022-1236(79)90077-6.  Google Scholar

[9]

R. T. Glassey, On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation,, J. Math. Phys., 18 (1977), 1794.  doi: 10.1063/1.523491.  Google Scholar

[10]

E. P. Gross, Physics of many-particle systems,, (eds. E. Meeron), 1 (1966), 231.   Google Scholar

[11]

P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, Part 1 and 2,, Ann. Inst. H. Poincare Anal. Non Lineaire, 1 (1984), 109.   Google Scholar

[12]

M. Reed and B. Simon, Methods of Modern Mathematical Physics,, Vols. II, (2003).   Google Scholar

[13]

M. Kurth, On the existence of infinitely many modes of a nonlocal nonlinear Schrödinger equation related to Dispersion-Managed solitons,, SIAM J. Math. Anal., 36 (2004), 967.  doi: 10.1137/S0036141003431530.  Google Scholar

[14]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (1983), 567.   Google Scholar

[15]

M. Willem, Minimax Theorems,, Birkhäuser, (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[16]

J. Zhang, Stability of attractive Bose-Einstein condensates,, J. Statistical Phys., 101 (2000), 731.  doi: 10.1023/A:1026437923987.  Google Scholar

show all references

References:
[1]

P. Bégout, Necessary conditions and sufficient conditions for global existence in the nonlinear Schrödinger equation,, Adv. Math. Sci. Appl., 12 (2002), 817.   Google Scholar

[2]

Y. Cao, Z. H. Musslimani and E. S. Titi, Nonlinear Schrödinger -Helmholtz equation as numerical regularization of the nonlinear Schrödinger equation,, Nonlinearity, 21 (2008), 879.  doi: 10.1088/0951-7715/21/5/001.  Google Scholar

[3]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Institute of Mathematical Sciences, 10 (2005).  doi: 10.1090/cln/010.  Google Scholar

[4]

T. Cazenave and P. L. Lions, Orbital stability of standing waves for some nonlinear Schrödinger equations,, Commun. Math. Phys., 85 (1982), 549.  doi: 10.1007/BF01403504.  Google Scholar

[5]

G. Chen and J. Zhang, Remarks on global esistence for the supercritical nonlinear Schrödinger equation with a harmonic potential,, J. Math. Anal. Appl., 320 (2006), 591.  doi: 10.1016/j.jmaa.2005.07.008.  Google Scholar

[6]

J. Chen and B. Guo, Strong instability of standing waves for a nonlocal Schrödinger equation,, Phys. D, 227 (2007), 142.  doi: 10.1016/j.physd.2007.01.004.  Google Scholar

[7]

J. Chen, B. Guo and Y. Han, Sharp constant in nonlocal inequality and its applications to nonlocal Schrödinger equation with harmonic potential,, Commun. Math. Sci., 7 (2009), 549.  doi: 10.4310/CMS.2009.v7.n3.a2.  Google Scholar

[8]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equation, I: The Cauchy problem,, J. Funct. Anal., 32 (1979), 33.  doi: 10.1016/0022-1236(79)90077-6.  Google Scholar

[9]

R. T. Glassey, On the blowing-up of solutions to the Cauchy problem for the nonlinear Schrödinger equation,, J. Math. Phys., 18 (1977), 1794.  doi: 10.1063/1.523491.  Google Scholar

[10]

E. P. Gross, Physics of many-particle systems,, (eds. E. Meeron), 1 (1966), 231.   Google Scholar

[11]

P. L. Lions, The concentration-compactness principle in the calculus of variations, The locally compact case, Part 1 and 2,, Ann. Inst. H. Poincare Anal. Non Lineaire, 1 (1984), 109.   Google Scholar

[12]

M. Reed and B. Simon, Methods of Modern Mathematical Physics,, Vols. II, (2003).   Google Scholar

[13]

M. Kurth, On the existence of infinitely many modes of a nonlocal nonlinear Schrödinger equation related to Dispersion-Managed solitons,, SIAM J. Math. Anal., 36 (2004), 967.  doi: 10.1137/S0036141003431530.  Google Scholar

[14]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Comm. Math. Phys., 87 (1983), 567.   Google Scholar

[15]

M. Willem, Minimax Theorems,, Birkhäuser, (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[16]

J. Zhang, Stability of attractive Bose-Einstein condensates,, J. Statistical Phys., 101 (2000), 731.  doi: 10.1023/A:1026437923987.  Google Scholar

[1]

João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321

[2]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[3]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[6]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[7]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[8]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[9]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[10]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[11]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[12]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[13]

Jong Yoon Hyun, Boran Kim, Minwon Na. Construction of minimal linear codes from multi-variable functions. Advances in Mathematics of Communications, 2021, 15 (2) : 227-240. doi: 10.3934/amc.2020055

[14]

Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385

[15]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

[16]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[17]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[18]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[19]

Philippe Laurençot, Christoph Walker. Variational solutions to an evolution model for MEMS with heterogeneous dielectric properties. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 677-694. doi: 10.3934/dcdss.2020360

[20]

Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]