December  2016, 9(6): 1629-1645. doi: 10.3934/dcdss.2016067

The bifurcations of solitary and kink waves described by the Gardner equation

1. 

School of Mathematics, South China University of Technology, Guangzhou 510640, China

2. 

Department of Mathematics, South China University of Technology, Guangzhou 510640

Received  July 2015 Revised  September 2016 Published  November 2016

In this paper, we investigate the bifurcations of nonlinear waves described by the Gardner equation $u_{t}+a u u_{x}+b u^{2} u_{x}+\gamma u_{xxx}=0$. We obtain some new results as follows: For arbitrary given parameters $b$ and $\gamma$, we choose the parameter $a$ as bifurcation parameter. Through the phase analysis and explicit expressions of some nonlinear waves, we reveal two kinds of important bifurcation phenomena. The first phenomenon is that the solitary waves with fractional expressions can be bifurcated from three types of nonlinear waves which are solitary waves with hyperbolic expression and two types of periodic waves with elliptic expression and trigonometric expression respectively. The second phenomenon is that the kink waves can be bifurcated from the solitary waves and the singular waves.
Citation: Yiren Chen, Zhengrong Liu. The bifurcations of solitary and kink waves described by the Gardner equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1629-1645. doi: 10.3934/dcdss.2016067
References:
[1]

G. Betchewe, K. K. Victor, B. B. Thomas and K. T. Crepin, New solutions of the Gardner equation: Analytical and numerical analysis of its dynamical understanding,, Appl. Math. Comput., 223 (2013), 377.  doi: 10.1016/j.amc.2013.08.028.  Google Scholar

[2]

A. Biswas and M. Song, Soliton solution and bifurcation analysis of the Zakharov-Kuznetsov-Benjamin-Bona-Mahoney equation with power law nonlinearity,, Commun. Nonlinear Sci. Numer. Simulat., 18 (2013), 1676.  doi: 10.1016/j.cnsns.2012.11.014.  Google Scholar

[3]

Y. R. Chen and R. Liu, Some new nonlinear wave solutions for two (3+1)-dimensional equations,, Appl. Math. Comput., 260 (2015), 397.  doi: 10.1016/j.amc.2015.03.098.  Google Scholar

[4]

M. W. Coffey, On series expansions giving closed-form solutions of Korteweg-de Vries-like equations,, SIAM J. Appl. Math., 50 (1990), 1580.  doi: 10.1137/0150093.  Google Scholar

[5]

Z. Fu, S. Liu and S. Liu, New kinds of solutions to Gardner equation,, Chaos Soliton. Fract., 20 (2004), 301.  doi: 10.1016/S0960-0779(03)00383-7.  Google Scholar

[6]

R. Grimshaw, D. Pelinovsky, E. Pelinovsky and A. Slunyaev, Generation of large-amplitude solitons in the extended Korteweg-de Vries equation,, Chaos, 12 (2002), 1070.  doi: 10.1063/1.1521391.  Google Scholar

[7]

R. Grimshawa, D. Pelinovsky, E. Pelinovsky and T. Talipova, Wave group dynamics in weakly nonlinear long-wave models,, Physica D, 159 (2001), 35.  doi: 10.1016/S0167-2789(01)00333-5.  Google Scholar

[8]

R. Grimshaw, A. Slunyaev and E. Pelinovsky, Generation of solitons and breathers in the extended Korteweg-de Vries equation with positive cubic nonlinearity,, Chaos, 20 (2010).  doi: 10.1063/1.3279480.  Google Scholar

[9]

K. Konno and Y. H. Ichikawa, A modified Korteweg de Vries equation for ion acoustic waves,, J. Phys. Soc. Jpn., 37 (1974), 1631.  doi: 10.1143/JPSJ.37.1631.  Google Scholar

[10]

S. Liu, Z. Fu, S. Liu and Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations,, Phys. Lett. A, 289 (2001), 69.  doi: 10.1016/S0375-9601(01)00580-1.  Google Scholar

[11]

R. Liu and W. F. Yan, Some common expressions and new bifurcation phenomena for nonlinear waves in a generalized mKdV equation,, Int. J. Bifurcat. Chaos, 23 (2013).  doi: 10.1142/S0218127413300073.  Google Scholar

[12]

Y. Long, W. G. Rui and B. He, Travelling wave solutions for a higher order wave equations of KdV type (I),, Chaos Soliton. Fract., 23 (2005), 469.  doi: 10.1016/j.chaos.2004.04.027.  Google Scholar

[13]

S. Y. Lou and L. L. Chen, Solitary wave solutions and cnoidal wave solutions to the combined KdV and mKdV equation,, Math. Meth. Appl. Sci., 17 (1994), 339.  doi: 10.1002/mma.1670170503.  Google Scholar

[14]

W. Mafliet and W. Hereman, The tanh method: I . Exact solutions of nonlinear evolution and wave equations,, Phys. Scr., 54 (1996), 563.  doi: 10.1088/0031-8949/54/6/003.  Google Scholar

[15]

R. M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation,, J. Math. Phys., 9 (1968), 1202.  doi: 10.1063/1.1664700.  Google Scholar

[16]

R. M. Miura, C. S. Gardner and M. D. Kruskal, Korteweg-de vries equation and generalizations. II. existence of conservation laws and constants of motion,, J. Math. Phys., 9 (1968), 1204.  doi: 10.1063/1.1664701.  Google Scholar

[17]

A. C. Newell, Solitons in Mathematics and Physics,, SIAM, (1985).  doi: 10.1137/1.9781611970227.  Google Scholar

[18]

A. Saha, B. Talukdar and S. Chatterjee, Dynamical systems theory for the Gardner equation,, Phys. Rev. E, 89 (2014).  doi: 10.1103/PhysRevE.89.023204.  Google Scholar

[19]

M. Song, B. S. Ahmed, E. Zerrad and A. Biswas, Domain wall and bifurcation analysis of the Klein-Gordon Zakharov equation in (1 + 2)-dimensions with power law nonlinearity,, Chaos, 23 (2013).  doi: 10.1063/1.4816346.  Google Scholar

[20]

M. Wadati, Wave propagation in nonlinear lattice. I,, J. Phys. Soc. Jpn., 38 (1975), 673.  doi: 10.1143/JPSJ.38.673.  Google Scholar

[21]

M. Wadati, Wave propagation in nonlinear lattice. II,, J. Phys. Soc. Jpn., 38 (1975), 681.  doi: 10.1143/JPSJ.38.673.  Google Scholar

[22]

A. M. Wazwaz, The extended tanh method for abundant solitary wave solutions of nonlinear wave equations,, Appl. Math. Comput., 187 (2007), 1131.  doi: 10.1016/j.amc.2006.09.013.  Google Scholar

[23]

J. F. Zhang, New solitary wave solution of the combined KdV and mKdV equation,, Int. J. Theor. Phys., 37 (1998), 1541.  doi: 10.1023/A:1026615919186.  Google Scholar

show all references

References:
[1]

G. Betchewe, K. K. Victor, B. B. Thomas and K. T. Crepin, New solutions of the Gardner equation: Analytical and numerical analysis of its dynamical understanding,, Appl. Math. Comput., 223 (2013), 377.  doi: 10.1016/j.amc.2013.08.028.  Google Scholar

[2]

A. Biswas and M. Song, Soliton solution and bifurcation analysis of the Zakharov-Kuznetsov-Benjamin-Bona-Mahoney equation with power law nonlinearity,, Commun. Nonlinear Sci. Numer. Simulat., 18 (2013), 1676.  doi: 10.1016/j.cnsns.2012.11.014.  Google Scholar

[3]

Y. R. Chen and R. Liu, Some new nonlinear wave solutions for two (3+1)-dimensional equations,, Appl. Math. Comput., 260 (2015), 397.  doi: 10.1016/j.amc.2015.03.098.  Google Scholar

[4]

M. W. Coffey, On series expansions giving closed-form solutions of Korteweg-de Vries-like equations,, SIAM J. Appl. Math., 50 (1990), 1580.  doi: 10.1137/0150093.  Google Scholar

[5]

Z. Fu, S. Liu and S. Liu, New kinds of solutions to Gardner equation,, Chaos Soliton. Fract., 20 (2004), 301.  doi: 10.1016/S0960-0779(03)00383-7.  Google Scholar

[6]

R. Grimshaw, D. Pelinovsky, E. Pelinovsky and A. Slunyaev, Generation of large-amplitude solitons in the extended Korteweg-de Vries equation,, Chaos, 12 (2002), 1070.  doi: 10.1063/1.1521391.  Google Scholar

[7]

R. Grimshawa, D. Pelinovsky, E. Pelinovsky and T. Talipova, Wave group dynamics in weakly nonlinear long-wave models,, Physica D, 159 (2001), 35.  doi: 10.1016/S0167-2789(01)00333-5.  Google Scholar

[8]

R. Grimshaw, A. Slunyaev and E. Pelinovsky, Generation of solitons and breathers in the extended Korteweg-de Vries equation with positive cubic nonlinearity,, Chaos, 20 (2010).  doi: 10.1063/1.3279480.  Google Scholar

[9]

K. Konno and Y. H. Ichikawa, A modified Korteweg de Vries equation for ion acoustic waves,, J. Phys. Soc. Jpn., 37 (1974), 1631.  doi: 10.1143/JPSJ.37.1631.  Google Scholar

[10]

S. Liu, Z. Fu, S. Liu and Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations,, Phys. Lett. A, 289 (2001), 69.  doi: 10.1016/S0375-9601(01)00580-1.  Google Scholar

[11]

R. Liu and W. F. Yan, Some common expressions and new bifurcation phenomena for nonlinear waves in a generalized mKdV equation,, Int. J. Bifurcat. Chaos, 23 (2013).  doi: 10.1142/S0218127413300073.  Google Scholar

[12]

Y. Long, W. G. Rui and B. He, Travelling wave solutions for a higher order wave equations of KdV type (I),, Chaos Soliton. Fract., 23 (2005), 469.  doi: 10.1016/j.chaos.2004.04.027.  Google Scholar

[13]

S. Y. Lou and L. L. Chen, Solitary wave solutions and cnoidal wave solutions to the combined KdV and mKdV equation,, Math. Meth. Appl. Sci., 17 (1994), 339.  doi: 10.1002/mma.1670170503.  Google Scholar

[14]

W. Mafliet and W. Hereman, The tanh method: I . Exact solutions of nonlinear evolution and wave equations,, Phys. Scr., 54 (1996), 563.  doi: 10.1088/0031-8949/54/6/003.  Google Scholar

[15]

R. M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation,, J. Math. Phys., 9 (1968), 1202.  doi: 10.1063/1.1664700.  Google Scholar

[16]

R. M. Miura, C. S. Gardner and M. D. Kruskal, Korteweg-de vries equation and generalizations. II. existence of conservation laws and constants of motion,, J. Math. Phys., 9 (1968), 1204.  doi: 10.1063/1.1664701.  Google Scholar

[17]

A. C. Newell, Solitons in Mathematics and Physics,, SIAM, (1985).  doi: 10.1137/1.9781611970227.  Google Scholar

[18]

A. Saha, B. Talukdar and S. Chatterjee, Dynamical systems theory for the Gardner equation,, Phys. Rev. E, 89 (2014).  doi: 10.1103/PhysRevE.89.023204.  Google Scholar

[19]

M. Song, B. S. Ahmed, E. Zerrad and A. Biswas, Domain wall and bifurcation analysis of the Klein-Gordon Zakharov equation in (1 + 2)-dimensions with power law nonlinearity,, Chaos, 23 (2013).  doi: 10.1063/1.4816346.  Google Scholar

[20]

M. Wadati, Wave propagation in nonlinear lattice. I,, J. Phys. Soc. Jpn., 38 (1975), 673.  doi: 10.1143/JPSJ.38.673.  Google Scholar

[21]

M. Wadati, Wave propagation in nonlinear lattice. II,, J. Phys. Soc. Jpn., 38 (1975), 681.  doi: 10.1143/JPSJ.38.673.  Google Scholar

[22]

A. M. Wazwaz, The extended tanh method for abundant solitary wave solutions of nonlinear wave equations,, Appl. Math. Comput., 187 (2007), 1131.  doi: 10.1016/j.amc.2006.09.013.  Google Scholar

[23]

J. F. Zhang, New solitary wave solution of the combined KdV and mKdV equation,, Int. J. Theor. Phys., 37 (1998), 1541.  doi: 10.1023/A:1026615919186.  Google Scholar

[1]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[2]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[3]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[4]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[5]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[6]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[7]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[8]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[9]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[10]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[11]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[12]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[13]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[14]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[15]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[16]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[17]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[18]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[19]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[20]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]