December  2016, 9(6): 1647-1662. doi: 10.3934/dcdss.2016068

Periodic solutions and homoclinic solutions for a Swift-Hohenberg equation with dispersion

1. 

Department of Mathematics, Zhanjiang Normal University, Zhanjiang, Guangdong 524048

Received  July 2015 Revised  August 2016 Published  November 2016

We investigate the 1D Swift-Hohenberg equation with dispersion $$u_t+2u_{\xi\xi}-\sigma u_{\xi\xi\xi}+u_{\xi\xi\xi\xi}=\alpha u+\beta u^2-\gamma u^3,$$ where $\sigma, \alpha, \beta$ and $\gamma$ are constants. Even if only the stationary solutions of this equation are considered, the dispersion term $-\sigma u_{\xi\xi\xi}$ destroys the spatial reversibility which plays an important role for studying localized patterns. In this paper, we focus on its traveling wave solutions and directly apply the dynamical approach to provide the first rigorous proof of existence of the periodic solutions and the homoclinic solutions bifurcating from the origin without the reversibility condition as the parameters are varied.
Citation: Shengfu Deng. Periodic solutions and homoclinic solutions for a Swift-Hohenberg equation with dispersion. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1647-1662. doi: 10.3934/dcdss.2016068
References:
[1]

D. Avitabile, D. J. B. Lloyd, J. Burke, E. Knobloch and B. Sandstede, To snake or not to snake in the planar Swift-Hohenberg equation,, SIAM J. Appl. Dyn. Syst., 9 (2010), 704.  doi: 10.1137/100782747.  Google Scholar

[2]

M. Beck, J. Knobloch, D. J. B. Lloyd, B. Sandstede and T. Wagenknecht, Snakes, ladders, and isolas of localized patterns,, SIAM J. Math. Anal., 41 (2009), 936.  doi: 10.1137/080713306.  Google Scholar

[3]

D. Blair, I. S. Aranson, G. W. Crabtree, V. Vinokur, L. S. Tsimring and C. Josserand, Patterns in thin vibrated granular layers: Interfaces, hexagons, and superoscillons,, Phys. Rev. E, 61 (2000), 5600.  doi: 10.1103/PhysRevE.61.5600.  Google Scholar

[4]

B. Braaksma, G. Iooss and L. Stolovitch, Existence of quasipattern solutions of the Swift-Hohenberg equation,, Arch. Ration. Mech. Anal., 209 (2013), 255.  doi: 10.1007/s00205-013-0627-7.  Google Scholar

[5]

J. Burke, S. M. Houghton and E. Knobloch, Swift-Hohenberg equation with broken reflection symmetry,, Phys. Rev. E, 80 (2009).  doi: 10.1103/PhysRevE.80.036202.  Google Scholar

[6]

P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals For Engineers and Physicists,, Springer-Verlag, (1954).   Google Scholar

[7]

P. Collet and J. P. Eckmann, Instabilities and Fronts in Extended Systems,, Princeton University Press, (1990).  doi: 10.1515/9781400861026.  Google Scholar

[8]

S. Day, Y. Hiraoka, K. Mischaikow and T. Ogawa, Rigorous numerics for global dynamics: A study of the Swift-Hohenberg equation,, SIAM J. Appl. Dyn. Syst., 4 (2005), 1.  doi: 10.1137/040604479.  Google Scholar

[9]

S. Deng and X. Li, Generalized homoclinic solutions for the Swift-Hohenberg equation,, J. Math. Anal. Appl., 390 (2012), 15.  doi: 10.1016/j.jmaa.2011.11.074.  Google Scholar

[10]

S. Deng and S. M. Sun, Multi-hump solutions with small oscillations at infinity for stationary Swift-Hohenberg equation,, submitted., ().   Google Scholar

[11]

J. P. Gaivão and V. Gelfreich, Splitting of separatrices for the Hamiltonian-Hopf bifurcation with the Swift-Hohenberg equation as an example,, Nonlinearity, 24 (2011), 677.  doi: 10.1088/0951-7715/24/3/002.  Google Scholar

[12]

P. Gandhi, C. Beaume and E. Knobloch, A new resonance mechanism in the Swift-Hohenberg rquation with time-periodic forcing,, SIAM J. Appl. Dyn. Syst., 14 (2015), 860.  doi: 10.1137/14099468X.  Google Scholar

[13]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,, Springer-Verlag, (1990).   Google Scholar

[14]

M. Haragus and A. Scheel, Interfaces between rolls in the Swift-Hohenberg equation,, Int. J. Dyn. Syst. Diff. Equ., 1 (2007), 89.  doi: 10.1504/IJDSDE.2007.016510.  Google Scholar

[15]

G. Iooss and A. M. Rucklidge, On the existence of quasipattern solutions of the Swift-Hohenberg equation,, J. Nonlinear Sci., 20 (2010), 361.  doi: 10.1007/s00332-010-9063-0.  Google Scholar

[16]

J. Knobloch, M. Vielitz and T. Wagenknecht, Non-reversible perturbations of homoclinic snaking scenarios,, Nonlinearity, 25 (2012), 3469.  doi: 10.1088/0951-7715/25/12/3469.  Google Scholar

[17]

N. A. Kudryashov and D. I. Sinelshchikov, Exact solutions of the Swift-Hohenberg equation with dispersion,, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 26.  doi: 10.1016/j.cnsns.2011.04.008.  Google Scholar

[18]

R. E. LaQuey, S. M. Mahajan, P. H. Rutherford and W. M. Tang, Nonlinear saturation of the trapped-ion mode,, Phys. Rev. Lett., 34 (1975), 391.  doi: 10.1103/PhysRevLett.34.391.  Google Scholar

[19]

L. Lee and H. Swinney, Lamellar structures and self-replicating spots in a reaction-diffusion system,, Phys. Rev. E, 51 (1995), 1899.  doi: 10.1103/PhysRevE.51.1899.  Google Scholar

[20]

L. Lega, J. V. Moloney and A. C. Newell, Swift-Hohenberg equation for lasers,, Phys. Rev. Lett., 73 (1994), 2978.  doi: 10.1103/PhysRevLett.73.2978.  Google Scholar

[21]

M. Lopez-Fernandez and S. Sauter, Fast and stable contour integration for high order divided differences via elliptic functions,, Math. Comp., 84 (2015), 1291.  doi: 10.1090/S0025-5718-2014-02890-1.  Google Scholar

[22]

E. Makrides and B. Sandstede, Predicting the bifurcation structure of localized snaking patterns,, Phys. D, 268 (2014), 59.  doi: 10.1016/j.physd.2013.11.009.  Google Scholar

[23]

P. Mandel, Theoretical Problems in Cavity Nonlinear Optics,, Cambridge University Press, (1997).   Google Scholar

[24]

S. G. McCalla and B. Sandstede, Spots in the Swift-Hohenberg equation,, SIAM J. Appl. Dyn. Syst., 12 (2013), 831.  doi: 10.1137/120882111.  Google Scholar

[25]

A. Mielke, Instability and stability of rolls in the Swift-Hohenberg equation,, Comm. Math. Phys., 189 (1997), 829.  doi: 10.1007/s002200050230.  Google Scholar

[26]

D. Morgan and J. H. P. Dawes, The Swift-Hohenberg equation with a nonlocal nonlinearity,, Phys. D, 270 (2014), 60.  doi: 10.1016/j.physd.2013.11.018.  Google Scholar

[27]

L. A. Peletier and V. Rottschafer, Pattern selection of solutions of the Swift-Hohenberg equation,, Phys. D, 194 (2004), 95.  doi: 10.1016/j.physd.2004.01.043.  Google Scholar

[28]

L. A. Peletier and J. F. Williams, Some canonical bifurcations in the Swift-Hohenberg equation,, SIAM J. Appl. Dyn. Syst., 6 (2007), 208.  doi: 10.1137/050647232.  Google Scholar

[29]

D. Smets and J. B. van den Berg, Homoclinic solutions for Swift-Hohenberg and suspension bridge type equations,, J. Diff. Eqns., 184 (2002), 78.  doi: 10.1006/jdeq.2001.4135.  Google Scholar

[30]

J. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability,, Phys. Rev. A, 15 (1977), 319.  doi: 10.1103/PhysRevA.15.319.  Google Scholar

[31]

J. B. van den Berg, L. A. Peletier and W. C. Troy, Global branches of multi-bump periodic solutions of the Swift-Hohenberg equation,, Arch. Ration. Mech. Anal., 158 (2001), 91.  doi: 10.1007/PL00004243.  Google Scholar

[32]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems,, Springer-Verlag, (1996).  doi: 10.1007/978-3-642-61453-8.  Google Scholar

show all references

References:
[1]

D. Avitabile, D. J. B. Lloyd, J. Burke, E. Knobloch and B. Sandstede, To snake or not to snake in the planar Swift-Hohenberg equation,, SIAM J. Appl. Dyn. Syst., 9 (2010), 704.  doi: 10.1137/100782747.  Google Scholar

[2]

M. Beck, J. Knobloch, D. J. B. Lloyd, B. Sandstede and T. Wagenknecht, Snakes, ladders, and isolas of localized patterns,, SIAM J. Math. Anal., 41 (2009), 936.  doi: 10.1137/080713306.  Google Scholar

[3]

D. Blair, I. S. Aranson, G. W. Crabtree, V. Vinokur, L. S. Tsimring and C. Josserand, Patterns in thin vibrated granular layers: Interfaces, hexagons, and superoscillons,, Phys. Rev. E, 61 (2000), 5600.  doi: 10.1103/PhysRevE.61.5600.  Google Scholar

[4]

B. Braaksma, G. Iooss and L. Stolovitch, Existence of quasipattern solutions of the Swift-Hohenberg equation,, Arch. Ration. Mech. Anal., 209 (2013), 255.  doi: 10.1007/s00205-013-0627-7.  Google Scholar

[5]

J. Burke, S. M. Houghton and E. Knobloch, Swift-Hohenberg equation with broken reflection symmetry,, Phys. Rev. E, 80 (2009).  doi: 10.1103/PhysRevE.80.036202.  Google Scholar

[6]

P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals For Engineers and Physicists,, Springer-Verlag, (1954).   Google Scholar

[7]

P. Collet and J. P. Eckmann, Instabilities and Fronts in Extended Systems,, Princeton University Press, (1990).  doi: 10.1515/9781400861026.  Google Scholar

[8]

S. Day, Y. Hiraoka, K. Mischaikow and T. Ogawa, Rigorous numerics for global dynamics: A study of the Swift-Hohenberg equation,, SIAM J. Appl. Dyn. Syst., 4 (2005), 1.  doi: 10.1137/040604479.  Google Scholar

[9]

S. Deng and X. Li, Generalized homoclinic solutions for the Swift-Hohenberg equation,, J. Math. Anal. Appl., 390 (2012), 15.  doi: 10.1016/j.jmaa.2011.11.074.  Google Scholar

[10]

S. Deng and S. M. Sun, Multi-hump solutions with small oscillations at infinity for stationary Swift-Hohenberg equation,, submitted., ().   Google Scholar

[11]

J. P. Gaivão and V. Gelfreich, Splitting of separatrices for the Hamiltonian-Hopf bifurcation with the Swift-Hohenberg equation as an example,, Nonlinearity, 24 (2011), 677.  doi: 10.1088/0951-7715/24/3/002.  Google Scholar

[12]

P. Gandhi, C. Beaume and E. Knobloch, A new resonance mechanism in the Swift-Hohenberg rquation with time-periodic forcing,, SIAM J. Appl. Dyn. Syst., 14 (2015), 860.  doi: 10.1137/14099468X.  Google Scholar

[13]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields,, Springer-Verlag, (1990).   Google Scholar

[14]

M. Haragus and A. Scheel, Interfaces between rolls in the Swift-Hohenberg equation,, Int. J. Dyn. Syst. Diff. Equ., 1 (2007), 89.  doi: 10.1504/IJDSDE.2007.016510.  Google Scholar

[15]

G. Iooss and A. M. Rucklidge, On the existence of quasipattern solutions of the Swift-Hohenberg equation,, J. Nonlinear Sci., 20 (2010), 361.  doi: 10.1007/s00332-010-9063-0.  Google Scholar

[16]

J. Knobloch, M. Vielitz and T. Wagenknecht, Non-reversible perturbations of homoclinic snaking scenarios,, Nonlinearity, 25 (2012), 3469.  doi: 10.1088/0951-7715/25/12/3469.  Google Scholar

[17]

N. A. Kudryashov and D. I. Sinelshchikov, Exact solutions of the Swift-Hohenberg equation with dispersion,, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 26.  doi: 10.1016/j.cnsns.2011.04.008.  Google Scholar

[18]

R. E. LaQuey, S. M. Mahajan, P. H. Rutherford and W. M. Tang, Nonlinear saturation of the trapped-ion mode,, Phys. Rev. Lett., 34 (1975), 391.  doi: 10.1103/PhysRevLett.34.391.  Google Scholar

[19]

L. Lee and H. Swinney, Lamellar structures and self-replicating spots in a reaction-diffusion system,, Phys. Rev. E, 51 (1995), 1899.  doi: 10.1103/PhysRevE.51.1899.  Google Scholar

[20]

L. Lega, J. V. Moloney and A. C. Newell, Swift-Hohenberg equation for lasers,, Phys. Rev. Lett., 73 (1994), 2978.  doi: 10.1103/PhysRevLett.73.2978.  Google Scholar

[21]

M. Lopez-Fernandez and S. Sauter, Fast and stable contour integration for high order divided differences via elliptic functions,, Math. Comp., 84 (2015), 1291.  doi: 10.1090/S0025-5718-2014-02890-1.  Google Scholar

[22]

E. Makrides and B. Sandstede, Predicting the bifurcation structure of localized snaking patterns,, Phys. D, 268 (2014), 59.  doi: 10.1016/j.physd.2013.11.009.  Google Scholar

[23]

P. Mandel, Theoretical Problems in Cavity Nonlinear Optics,, Cambridge University Press, (1997).   Google Scholar

[24]

S. G. McCalla and B. Sandstede, Spots in the Swift-Hohenberg equation,, SIAM J. Appl. Dyn. Syst., 12 (2013), 831.  doi: 10.1137/120882111.  Google Scholar

[25]

A. Mielke, Instability and stability of rolls in the Swift-Hohenberg equation,, Comm. Math. Phys., 189 (1997), 829.  doi: 10.1007/s002200050230.  Google Scholar

[26]

D. Morgan and J. H. P. Dawes, The Swift-Hohenberg equation with a nonlocal nonlinearity,, Phys. D, 270 (2014), 60.  doi: 10.1016/j.physd.2013.11.018.  Google Scholar

[27]

L. A. Peletier and V. Rottschafer, Pattern selection of solutions of the Swift-Hohenberg equation,, Phys. D, 194 (2004), 95.  doi: 10.1016/j.physd.2004.01.043.  Google Scholar

[28]

L. A. Peletier and J. F. Williams, Some canonical bifurcations in the Swift-Hohenberg equation,, SIAM J. Appl. Dyn. Syst., 6 (2007), 208.  doi: 10.1137/050647232.  Google Scholar

[29]

D. Smets and J. B. van den Berg, Homoclinic solutions for Swift-Hohenberg and suspension bridge type equations,, J. Diff. Eqns., 184 (2002), 78.  doi: 10.1006/jdeq.2001.4135.  Google Scholar

[30]

J. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability,, Phys. Rev. A, 15 (1977), 319.  doi: 10.1103/PhysRevA.15.319.  Google Scholar

[31]

J. B. van den Berg, L. A. Peletier and W. C. Troy, Global branches of multi-bump periodic solutions of the Swift-Hohenberg equation,, Arch. Ration. Mech. Anal., 158 (2001), 91.  doi: 10.1007/PL00004243.  Google Scholar

[32]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems,, Springer-Verlag, (1996).  doi: 10.1007/978-3-642-61453-8.  Google Scholar

[1]

Jongmin Han, Masoud Yari. Dynamic bifurcation of the complex Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 875-891. doi: 10.3934/dcdsb.2009.11.875

[2]

Jongmin Han, Chun-Hsiung Hsia. Dynamical bifurcation of the two dimensional Swift-Hohenberg equation with odd periodic condition. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2431-2449. doi: 10.3934/dcdsb.2012.17.2431

[3]

Yixia Shi, Maoan Han. Existence of generalized homoclinic solutions for a modified Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020114

[4]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Doo Seok Lee. Bifurcation and final patterns of a modified Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2543-2567. doi: 10.3934/dcdsb.2017087

[5]

Toshiyuki Ogawa, Takashi Okuda. Bifurcation analysis to Swift-Hohenberg equation with Steklov type boundary conditions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 273-297. doi: 10.3934/dcds.2009.25.273

[6]

Jaume Llibre, Ernesto Pérez-Chavela. Zero-Hopf bifurcation for a class of Lorenz-type systems. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1731-1736. doi: 10.3934/dcdsb.2014.19.1731

[7]

Masoud Yari. Attractor bifurcation and final patterns of the n-dimensional and generalized Swift-Hohenberg equations. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 441-456. doi: 10.3934/dcdsb.2007.7.441

[8]

J. Burke, Edgar Knobloch. Multipulse states in the Swift-Hohenberg equation. Conference Publications, 2009, 2009 (Special) : 109-117. doi: 10.3934/proc.2009.2009.109

[9]

Peng Gao. Averaging principles for the Swift-Hohenberg equation. Communications on Pure & Applied Analysis, 2020, 19 (1) : 293-310. doi: 10.3934/cpaa.2020016

[10]

Ling-Jun Wang. The dynamics of small amplitude solutions of the Swift-Hohenberg equation on a large interval. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1129-1156. doi: 10.3934/cpaa.2012.11.1129

[11]

Yanfeng Guo, Jinqiao Duan, Donglong Li. Approximation of random invariant manifolds for a stochastic Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1701-1715. doi: 10.3934/dcdss.2016071

[12]

John Burke, Edgar Knobloch. Normal form for spatial dynamics in the Swift-Hohenberg equation. Conference Publications, 2007, 2007 (Special) : 170-180. doi: 10.3934/proc.2007.2007.170

[13]

Isaac A. García, Claudia Valls. The three-dimensional center problem for the zero-Hopf singularity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2027-2046. doi: 10.3934/dcds.2016.36.2027

[14]

Andrea Giorgini. On the Swift-Hohenberg equation with slow and fast dynamics: well-posedness and long-time behavior. Communications on Pure & Applied Analysis, 2016, 15 (1) : 219-241. doi: 10.3934/cpaa.2016.15.219

[15]

Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121

[16]

Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098

[17]

Juntao Sun, Jifeng Chu, Zhaosheng Feng. Homoclinic orbits for first order periodic Hamiltonian systems with spectrum point zero. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3807-3824. doi: 10.3934/dcds.2013.33.3807

[18]

Ewa Schmeidel, Robert Jankowski. Asymptotically zero solution of a class of higher nonlinear neutral difference equations with quasidifferences. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2691-2696. doi: 10.3934/dcdsb.2014.19.2691

[19]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[20]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]