December  2016, 9(6): 1701-1715. doi: 10.3934/dcdss.2016071

Approximation of random invariant manifolds for a stochastic Swift-Hohenberg equation

1. 

School of Science, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, China, China

2. 

Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616

Received  June 2015 Revised  September 2016 Published  November 2016

Random invariant manifolds are considered for a stochastic Swift-Hohenberg equation with multiplicative noise in the Stratonovich sense. Using a stochastic transformation and a technique of cut-off function, existence of random invariant manifolds and attracting property of the corresponding random dynamical system are obtained by Lyaponov-Perron method. Then in the sense of large probability, an approximation of invariant manifolds has been investigated and this is further used to describe the geometric shape of the invariant manifolds.
Citation: Yanfeng Guo, Jinqiao Duan, Donglong Li. Approximation of random invariant manifolds for a stochastic Swift-Hohenberg equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1701-1715. doi: 10.3934/dcdss.2016071
References:
[1]

L. Arnold, Random Dynamical Systems,, Springer-Verlag, (1998).  doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

D. Blömker, M. Hairer and G. A. Pavliotis, Stochastic Swift-Hohenberg equaion near a change of stability,, Proceedings of Equadiff, 11 (2005), 27.   Google Scholar

[3]

D. Blömker and W. Wang, Qualitative properties of local random invariant manifolds for SPDE with quadratic nonlinearity,, J. Dyn. Differ. Equ., 22 (2010), 677.  doi: 10.1007/s10884-009-9145-6.  Google Scholar

[4]

D. Blömker, Amplitude Equations for Stochastic Partial Differential Equations,, vol.3 of Interdisciplinary Mathematical Sciences. World Scientific Publishing, (2007).  doi: 10.1142/9789812770608.  Google Scholar

[5]

G. Chen, J. Duan and J. Zhang, Geometric shape of invariant manifolds for a class of stochastic partial differential equations,, J. Math. Phys., 52 (2011).  doi: 10.1063/1.3614777.  Google Scholar

[6]

M. D. Chekroun, H. H. Liu and S. H. Wang, Stochastic Parameterizing Manifolds and non-Markovian Reduced Equations-Stochastic Manifolds for Nonlinear SPDEs II,, Springer Briefs in Mathematics, (2015).  doi: 10.1007/978-3-319-12520-6.  Google Scholar

[7]

I. Chueshov, Monotone Random Systems Theory and Applications,, Springer-Verlag, (2002).  doi: 10.1007/b83277.  Google Scholar

[8]

H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dyn. Differ. Equ., 9 (1997), 307.  doi: 10.1007/BF02219225.  Google Scholar

[9]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Theory Rel. Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[10]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511666223.  Google Scholar

[11]

J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for stochastic differential equations,, Ann. Probab., 31 (2003), 2109.  doi: 10.1214/aop/1068646380.  Google Scholar

[12]

J. Duan and K. Lu, Smooth stable and unstable manifolds for stoahcstic partial differential equations,, J. Dyn. Diff. Equ., 16 (2004), 949.  doi: 10.1007/s10884-004-7830-z.  Google Scholar

[13]

J. Duan and W. Wang, Effective Dynamics of Stochastic Partial Differential Equations,, Elsevier, (2014).   Google Scholar

[14]

J. P. Eckmann and C. E. Wayne, Propagating fronts and the center manifold theorem,, Commun. Math. Phys, 136 (1991), 285.  doi: 10.1007/BF02100026.  Google Scholar

[15]

H. Fu, X. Liu and J. Duan, Slow manifolds for multi-time-scale stochastic evolutionary systems,, Commun. Math. Sci., 11 (2013), 141.  doi: 10.4310/CMS.2013.v11.n1.a5.  Google Scholar

[16]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Springer-Varlag, (1981).   Google Scholar

[17]

D. Y. Hsieh, A. Q. Tang and X. P. Wang, On hydrodynamics instabilities, chaos, and phase transition,, Acta Mech. Sin., 12 (1996), 1.  doi: 10.1007/BF02486757.  Google Scholar

[18]

M. F. Hilali, S. Metens, P. Borckmans and G. Dewel, Pattern selection in the generalized Swift-Hohenberg equation,, Phys. Rev. E, 51 (1995), 2046.   Google Scholar

[19]

P. Imkeller and A. Monahan, Conceptual stochastic climate dynamics,, Stoch. Dynam., 2 (2002), 311.   Google Scholar

[20]

G. Lin, H. Gao, J. Duan and V. J. Ervin, Asymptotic dynamical difference between the nonlocal and local Swift-Hohenberg models,, J. Math. Phys., 41 (2000), 2077.  doi: 10.1063/1.533228.  Google Scholar

[21]

A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domains: Existence and comparison,, Nonlinearity, 8 (1995), 734.  doi: 10.1088/0951-7715/8/5/006.  Google Scholar

[22]

J. Oh, J. M. Ortiz de Zárate, J. V. Sengers and G. Ahlers, Dynamics of fluctuations in a fluid below the onset of Rayleigh-Bnárd convection,, Phys. Rev. E, 69 (2004).   Google Scholar

[23]

J. Oh and G. Ahlers, Thermal-noise effect on the transition to Rayleigh-Bnárd convection,, Phys. Rev. Lett., 91 (2003).   Google Scholar

[24]

A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations,, Springer-Varlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[25]

I. Rehberg, S. Rasenat, M. de la Torre Juárez, W. Schöpf, F. Hörner, G. Ahlers and H. R. Brand, Thermally induced hydrodynamic fluctuations below the onset of electroconvection,, Phys. Rev. Lett., 67 (1991), 596.  doi: 10.1103/PhysRevLett.67.596.  Google Scholar

[26]

X. Sun, J. Duan and X. Li, An impact of noise on invariant manifolds in nonlinear dynamical systems,, J. Math. Phys., 51 (2010).  doi: 10.1063/1.3371010.  Google Scholar

[27]

J. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability,, Phys. Rev. A, 15 (1977), 319.  doi: 10.1103/PhysRevA.15.319.  Google Scholar

[28]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[29]

W. Wang and J. Duan, A dynamical approximation for stochastic partial differential equations,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2800164.  Google Scholar

[30]

W. Wang, J. Sun and J. Duan, Ergodic dynamics of the stochastic Swift-Hohenberg system,, Nonlinear Analysis: Real World Appl., 6 (2005), 273.  doi: 10.1016/j.nonrwa.2004.08.009.  Google Scholar

[31]

E. Waymire and J. Duan, Probability and Partial Differential Equations in Modern Applied Mathematics,, IMA, (2005).  doi: 10.1007/978-0-387-29371-4.  Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems,, Springer-Verlag, (1998).  doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

D. Blömker, M. Hairer and G. A. Pavliotis, Stochastic Swift-Hohenberg equaion near a change of stability,, Proceedings of Equadiff, 11 (2005), 27.   Google Scholar

[3]

D. Blömker and W. Wang, Qualitative properties of local random invariant manifolds for SPDE with quadratic nonlinearity,, J. Dyn. Differ. Equ., 22 (2010), 677.  doi: 10.1007/s10884-009-9145-6.  Google Scholar

[4]

D. Blömker, Amplitude Equations for Stochastic Partial Differential Equations,, vol.3 of Interdisciplinary Mathematical Sciences. World Scientific Publishing, (2007).  doi: 10.1142/9789812770608.  Google Scholar

[5]

G. Chen, J. Duan and J. Zhang, Geometric shape of invariant manifolds for a class of stochastic partial differential equations,, J. Math. Phys., 52 (2011).  doi: 10.1063/1.3614777.  Google Scholar

[6]

M. D. Chekroun, H. H. Liu and S. H. Wang, Stochastic Parameterizing Manifolds and non-Markovian Reduced Equations-Stochastic Manifolds for Nonlinear SPDEs II,, Springer Briefs in Mathematics, (2015).  doi: 10.1007/978-3-319-12520-6.  Google Scholar

[7]

I. Chueshov, Monotone Random Systems Theory and Applications,, Springer-Verlag, (2002).  doi: 10.1007/b83277.  Google Scholar

[8]

H. Crauel, A. Debussche and F. Flandoli, Random attractors,, J. Dyn. Differ. Equ., 9 (1997), 307.  doi: 10.1007/BF02219225.  Google Scholar

[9]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Theory Rel. Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[10]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Cambridge University Press, (1992).  doi: 10.1017/CBO9780511666223.  Google Scholar

[11]

J. Duan, K. Lu and B. Schmalfuss, Invariant manifolds for stochastic differential equations,, Ann. Probab., 31 (2003), 2109.  doi: 10.1214/aop/1068646380.  Google Scholar

[12]

J. Duan and K. Lu, Smooth stable and unstable manifolds for stoahcstic partial differential equations,, J. Dyn. Diff. Equ., 16 (2004), 949.  doi: 10.1007/s10884-004-7830-z.  Google Scholar

[13]

J. Duan and W. Wang, Effective Dynamics of Stochastic Partial Differential Equations,, Elsevier, (2014).   Google Scholar

[14]

J. P. Eckmann and C. E. Wayne, Propagating fronts and the center manifold theorem,, Commun. Math. Phys, 136 (1991), 285.  doi: 10.1007/BF02100026.  Google Scholar

[15]

H. Fu, X. Liu and J. Duan, Slow manifolds for multi-time-scale stochastic evolutionary systems,, Commun. Math. Sci., 11 (2013), 141.  doi: 10.4310/CMS.2013.v11.n1.a5.  Google Scholar

[16]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Springer-Varlag, (1981).   Google Scholar

[17]

D. Y. Hsieh, A. Q. Tang and X. P. Wang, On hydrodynamics instabilities, chaos, and phase transition,, Acta Mech. Sin., 12 (1996), 1.  doi: 10.1007/BF02486757.  Google Scholar

[18]

M. F. Hilali, S. Metens, P. Borckmans and G. Dewel, Pattern selection in the generalized Swift-Hohenberg equation,, Phys. Rev. E, 51 (1995), 2046.   Google Scholar

[19]

P. Imkeller and A. Monahan, Conceptual stochastic climate dynamics,, Stoch. Dynam., 2 (2002), 311.   Google Scholar

[20]

G. Lin, H. Gao, J. Duan and V. J. Ervin, Asymptotic dynamical difference between the nonlocal and local Swift-Hohenberg models,, J. Math. Phys., 41 (2000), 2077.  doi: 10.1063/1.533228.  Google Scholar

[21]

A. Mielke and G. Schneider, Attractors for modulation equations on unbounded domains: Existence and comparison,, Nonlinearity, 8 (1995), 734.  doi: 10.1088/0951-7715/8/5/006.  Google Scholar

[22]

J. Oh, J. M. Ortiz de Zárate, J. V. Sengers and G. Ahlers, Dynamics of fluctuations in a fluid below the onset of Rayleigh-Bnárd convection,, Phys. Rev. E, 69 (2004).   Google Scholar

[23]

J. Oh and G. Ahlers, Thermal-noise effect on the transition to Rayleigh-Bnárd convection,, Phys. Rev. Lett., 91 (2003).   Google Scholar

[24]

A. Pazy, Semigroup of Linear Operators and Applications to Partial Differential Equations,, Springer-Varlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[25]

I. Rehberg, S. Rasenat, M. de la Torre Juárez, W. Schöpf, F. Hörner, G. Ahlers and H. R. Brand, Thermally induced hydrodynamic fluctuations below the onset of electroconvection,, Phys. Rev. Lett., 67 (1991), 596.  doi: 10.1103/PhysRevLett.67.596.  Google Scholar

[26]

X. Sun, J. Duan and X. Li, An impact of noise on invariant manifolds in nonlinear dynamical systems,, J. Math. Phys., 51 (2010).  doi: 10.1063/1.3371010.  Google Scholar

[27]

J. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective instability,, Phys. Rev. A, 15 (1977), 319.  doi: 10.1103/PhysRevA.15.319.  Google Scholar

[28]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Springer-Verlag, (1988).  doi: 10.1007/978-1-4684-0313-8.  Google Scholar

[29]

W. Wang and J. Duan, A dynamical approximation for stochastic partial differential equations,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2800164.  Google Scholar

[30]

W. Wang, J. Sun and J. Duan, Ergodic dynamics of the stochastic Swift-Hohenberg system,, Nonlinear Analysis: Real World Appl., 6 (2005), 273.  doi: 10.1016/j.nonrwa.2004.08.009.  Google Scholar

[31]

E. Waymire and J. Duan, Probability and Partial Differential Equations in Modern Applied Mathematics,, IMA, (2005).  doi: 10.1007/978-0-387-29371-4.  Google Scholar

[1]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[2]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[3]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[4]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[5]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[6]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[7]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[8]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[9]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[10]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[11]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[12]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[13]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[14]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[15]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[16]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[17]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[18]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[19]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[20]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]