December  2016, 9(6): 1775-1795. doi: 10.3934/dcdss.2016074

Periodic solutions of inhomogeneous Schrödinger flows into 2-sphere

1. 

Department of Mathematics, Shanghai University, Shanghai 200444, China

2. 

Institute of Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100190, China

Received  July 2015 Revised  September 2016 Published  November 2016

In this paper,we consider the so called generalized inhomogeneous Schrödinger flows from a closed Riemann surface $M$ into the standard 2-sphere $S^2$ associated with the energy functional given by \begin{align*} E_{f,P}(u)=\int_M\left(\frac{1}{2}f|\nabla u|^2+P(u_3)\right)dV_g. \end{align*} We showed the existence of special periodic solutions to the generalized inhomogeneous Schrödinger flows from $M$ with convolution symmetry (especially $M = S^2$) into $S^2$ when the function $f$ and $P$ satisfy certain conditions respectively. Especially, we show that the inhomogeneous Heisenberg spin chain system from a closed Riemann surface with convolution symmetry admits some special periodic solutions if the coupling function $f$ satisfies some suitable conditions. We also prove that there exist an infinite number of special periodic solutions to the Landau-Lifshitz system with an external magnetic field from $S^2$ into $S^2$.
Citation: Ping-Liang Huang, Youde Wang. Periodic solutions of inhomogeneous Schrödinger flows into 2-sphere. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1775-1795. doi: 10.3934/dcdss.2016074
References:
[1]

W. Chen and J. Jost, Maps with prescribed tension fields,, Comm. Anal. Geom., 12 (2004), 93.  doi: 10.4310/CAG.2004.v12.n1.a6.  Google Scholar

[2]

N. Chang, J. Shatah and K. Uhlenbeck, Schrödinger maps,, Comm. Pure Appl. Math., 53 (2000), 590.  doi: 10.1002/(SICI)1097-0312(200005)53:5<590::AID-CPA2>3.0.CO;2-R.  Google Scholar

[3]

Q. Ding, A note on NLS and the Schödinger flow of maps,, Phys. Lett. A, 248 (1998), 49.   Google Scholar

[4]

W. Ding, Lusternik-Schnirelmann theory for harmonic maps,, Acta Math. Sinica (N. S.), 2 (1986), 105.  doi: 10.1007/BF02564873.  Google Scholar

[5]

W. Y. Ding and Y. D. Wang, Schrödinger flow of mappings into sympletic manifolds,, Sci. China Ser. A, 41 (1998), 746.  doi: 10.1007/BF02901957.  Google Scholar

[6]

W. Y. Ding and Y. D. Wang, Local Schrödinger flow into Kähler manifolds,, Sci. China Ser. A, 44 (2001), 1446.  doi: 10.1007/BF02877074.  Google Scholar

[7]

W. Y. Ding and H. Yin, Special periodic Solutions of Schrödinger flow,, Math. Z., 253 (2006), 555.  doi: 10.1007/s00209-005-0922-6.  Google Scholar

[8]

J. Eells and L. Lemaire, Another report on harmonic maps,, London Math Soc., 20 (1988), 385.  doi: 10.1112/blms/20.5.385.  Google Scholar

[9]

S. Gustafson and J. Shatah, The stability of localize solutions of Landau-Lifshitz equations,, J. Comm. Pure Appl. Math., 55 (2002), 1136.  doi: 10.1002/cpa.3024.  Google Scholar

[10]

P. L. Huang, On some inhomogeneous Geometirc PDEs,, Ph.D thesis, (2007).   Google Scholar

[11]

Y. X. Li and Y. D. Wang, Bubbling location for f-harmonic maps and inhomogeneous Landau-Lifshitz equations,, Comm. Math. Helv., 81 (2006), 433.   Google Scholar

[12]

S. Kobayashi, Transformation Groups in Differential Geometry,, Springer-Verlag, (1972).   Google Scholar

[13]

A. M. Kosevich, B. A. Ivanov and A. S. Kovalev, Magnetic solitons,, Phys. Rep., 194 (1990), 117.  doi: 10.1016/0370-1573(90)90130-T.  Google Scholar

[14]

R. S. Palais, The principle of symmetric criticality,, Comm. Math. Phys., 69 (1979), 19.  doi: 10.1007/BF01941322.  Google Scholar

[15]

P. Y. H. Pang, H. Wang and Y. D. Wang, Local existence for inhomogeneous Schrödinger flow into Kähler manifolds,, Acta Math. Sinica, 16 (2000), 487.  doi: 10.1007/s101140000060.  Google Scholar

[16]

P. Y. H. Pang, H. Wang and Y. D. Wang, Schrödinger flow for maps into Kähler manifolds,, Asian J. Math., 5 (2001), 509.  doi: 10.4310/AJM.2001.v5.n3.a7.  Google Scholar

[17]

P. Y. H. Pang, H. Wang and Y. D. Wang, Schrödinger flow on Hermitian locally symmetric spaces,, Comm. Anal. Geom., 10 (2002), 653.  doi: 10.4310/CAG.2002.v10.n4.a1.  Google Scholar

[18]

X. Peng and G. Wang, Harmonic maps with a prescribed potential,, C. R. Acad. Sci., 327 (1998), 271.  doi: 10.1016/S0764-4442(98)80145-6.  Google Scholar

[19]

B. Piette and W. J. Zakrzewski, Localized solutions in a two-dimensional Landau-Lifshitz model,, Physic D, 119 (1998), 314.  doi: 10.1016/S0167-2789(98)00084-0.  Google Scholar

[20]

M. Struwe, Variational Methods,, $3^{rd}$ edition, (2000).  doi: 10.1007/978-3-662-04194-9.  Google Scholar

[21]

P. Sulem, C. Sulem and C. Bardos, On the continuous limit for a system of classical spins,, Comm. Math. Phys., 107 (1986), 431.  doi: 10.1007/BF01220998.  Google Scholar

[22]

J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres,, Ann. Math., 113 (1981), 1.  doi: 10.2307/1971131.  Google Scholar

[23]

H. Wang and Y. D. Wang, Global existence of inhomogeneous Heisenberg spin systems and Schrödinger flow,, Internat. J. Math., 11 (2000), 1079.  doi: 10.1142/S0129167X00000568.  Google Scholar

[24]

H. Yin, Periodic solutions of Schrödinger flow from $S^3$ to $S^2$,, Chinese Ann. Math. Ser. B, 27 (2006), 401.  doi: 10.1007/s11401-005-0101-4.  Google Scholar

[25]

Y. Zhou, B. Guo and S. Tan, Existence and uniqueness of Smooth solution for system of ferromagnetic chain,, Science in China A, 34 (1991), 257.   Google Scholar

show all references

References:
[1]

W. Chen and J. Jost, Maps with prescribed tension fields,, Comm. Anal. Geom., 12 (2004), 93.  doi: 10.4310/CAG.2004.v12.n1.a6.  Google Scholar

[2]

N. Chang, J. Shatah and K. Uhlenbeck, Schrödinger maps,, Comm. Pure Appl. Math., 53 (2000), 590.  doi: 10.1002/(SICI)1097-0312(200005)53:5<590::AID-CPA2>3.0.CO;2-R.  Google Scholar

[3]

Q. Ding, A note on NLS and the Schödinger flow of maps,, Phys. Lett. A, 248 (1998), 49.   Google Scholar

[4]

W. Ding, Lusternik-Schnirelmann theory for harmonic maps,, Acta Math. Sinica (N. S.), 2 (1986), 105.  doi: 10.1007/BF02564873.  Google Scholar

[5]

W. Y. Ding and Y. D. Wang, Schrödinger flow of mappings into sympletic manifolds,, Sci. China Ser. A, 41 (1998), 746.  doi: 10.1007/BF02901957.  Google Scholar

[6]

W. Y. Ding and Y. D. Wang, Local Schrödinger flow into Kähler manifolds,, Sci. China Ser. A, 44 (2001), 1446.  doi: 10.1007/BF02877074.  Google Scholar

[7]

W. Y. Ding and H. Yin, Special periodic Solutions of Schrödinger flow,, Math. Z., 253 (2006), 555.  doi: 10.1007/s00209-005-0922-6.  Google Scholar

[8]

J. Eells and L. Lemaire, Another report on harmonic maps,, London Math Soc., 20 (1988), 385.  doi: 10.1112/blms/20.5.385.  Google Scholar

[9]

S. Gustafson and J. Shatah, The stability of localize solutions of Landau-Lifshitz equations,, J. Comm. Pure Appl. Math., 55 (2002), 1136.  doi: 10.1002/cpa.3024.  Google Scholar

[10]

P. L. Huang, On some inhomogeneous Geometirc PDEs,, Ph.D thesis, (2007).   Google Scholar

[11]

Y. X. Li and Y. D. Wang, Bubbling location for f-harmonic maps and inhomogeneous Landau-Lifshitz equations,, Comm. Math. Helv., 81 (2006), 433.   Google Scholar

[12]

S. Kobayashi, Transformation Groups in Differential Geometry,, Springer-Verlag, (1972).   Google Scholar

[13]

A. M. Kosevich, B. A. Ivanov and A. S. Kovalev, Magnetic solitons,, Phys. Rep., 194 (1990), 117.  doi: 10.1016/0370-1573(90)90130-T.  Google Scholar

[14]

R. S. Palais, The principle of symmetric criticality,, Comm. Math. Phys., 69 (1979), 19.  doi: 10.1007/BF01941322.  Google Scholar

[15]

P. Y. H. Pang, H. Wang and Y. D. Wang, Local existence for inhomogeneous Schrödinger flow into Kähler manifolds,, Acta Math. Sinica, 16 (2000), 487.  doi: 10.1007/s101140000060.  Google Scholar

[16]

P. Y. H. Pang, H. Wang and Y. D. Wang, Schrödinger flow for maps into Kähler manifolds,, Asian J. Math., 5 (2001), 509.  doi: 10.4310/AJM.2001.v5.n3.a7.  Google Scholar

[17]

P. Y. H. Pang, H. Wang and Y. D. Wang, Schrödinger flow on Hermitian locally symmetric spaces,, Comm. Anal. Geom., 10 (2002), 653.  doi: 10.4310/CAG.2002.v10.n4.a1.  Google Scholar

[18]

X. Peng and G. Wang, Harmonic maps with a prescribed potential,, C. R. Acad. Sci., 327 (1998), 271.  doi: 10.1016/S0764-4442(98)80145-6.  Google Scholar

[19]

B. Piette and W. J. Zakrzewski, Localized solutions in a two-dimensional Landau-Lifshitz model,, Physic D, 119 (1998), 314.  doi: 10.1016/S0167-2789(98)00084-0.  Google Scholar

[20]

M. Struwe, Variational Methods,, $3^{rd}$ edition, (2000).  doi: 10.1007/978-3-662-04194-9.  Google Scholar

[21]

P. Sulem, C. Sulem and C. Bardos, On the continuous limit for a system of classical spins,, Comm. Math. Phys., 107 (1986), 431.  doi: 10.1007/BF01220998.  Google Scholar

[22]

J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres,, Ann. Math., 113 (1981), 1.  doi: 10.2307/1971131.  Google Scholar

[23]

H. Wang and Y. D. Wang, Global existence of inhomogeneous Heisenberg spin systems and Schrödinger flow,, Internat. J. Math., 11 (2000), 1079.  doi: 10.1142/S0129167X00000568.  Google Scholar

[24]

H. Yin, Periodic solutions of Schrödinger flow from $S^3$ to $S^2$,, Chinese Ann. Math. Ser. B, 27 (2006), 401.  doi: 10.1007/s11401-005-0101-4.  Google Scholar

[25]

Y. Zhou, B. Guo and S. Tan, Existence and uniqueness of Smooth solution for system of ferromagnetic chain,, Science in China A, 34 (1991), 257.   Google Scholar

[1]

Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101

[2]

Patrizia Pucci. Critical Schrödinger-Hardy systems in the Heisenberg group. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 375-400. doi: 10.3934/dcdss.2019025

[3]

Fábio Natali, Ademir Pastor. Orbital stability of periodic waves for the Klein-Gordon-Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 221-238. doi: 10.3934/dcds.2011.31.221

[4]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 37-65. doi: 10.3934/dcds.2007.19.37

[5]

Chunxiao Guo, Fan Cui, Yongqian Han. Global existence and uniqueness of the solution for the fractional Schrödinger-KdV-Burgers system. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1687-1699. doi: 10.3934/dcdss.2016070

[6]

Zhengping Wang, Huan-Song Zhou. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 809-816. doi: 10.3934/dcds.2007.18.809

[7]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[8]

Francois Ledrappier and Omri Sarig. Invariant measures for the horocycle flow on periodic hyperbolic surfaces. Electronic Research Announcements, 2005, 11: 89-94.

[9]

Chu-Hee Cho, Youngwoo Koh, Ihyeok Seo. On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1905-1926. doi: 10.3934/dcds.2016.36.1905

[10]

Yue Liu. Existence of unstable standing waves for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 193-209. doi: 10.3934/cpaa.2008.7.193

[11]

Jianqing Chen, Boling Guo. Sharp global existence and blowing up results for inhomogeneous Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 357-367. doi: 10.3934/dcdsb.2007.8.357

[12]

Valeria Banica, Luis Vega. Singularity formation for the 1-D cubic NLS and the Schrödinger map on $\mathbb S^2$. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1317-1329. doi: 10.3934/cpaa.2018064

[13]

Hiroko Morimoto. Survey on time periodic problem for fluid flow under inhomogeneous boundary condition. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 631-639. doi: 10.3934/dcdss.2012.5.631

[14]

GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1803-1816. doi: 10.3934/cpaa.2015.14.1803

[15]

Fábio Natali, Ademir Pastor. Stability properties of periodic standing waves for the Klein-Gordon-Schrödinger system. Communications on Pure & Applied Analysis, 2010, 9 (2) : 413-430. doi: 10.3934/cpaa.2010.9.413

[16]

Boling Guo, Haiyang Huang. Smooth solution of the generalized system of ferro-magnetic chain. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 729-740. doi: 10.3934/dcds.1999.5.729

[17]

Alexander Arbieto, Carlos Matheus. On the periodic Schrödinger-Debye equation. Communications on Pure & Applied Analysis, 2008, 7 (3) : 699-713. doi: 10.3934/cpaa.2008.7.699

[18]

Alexander Pankov. Nonlinear Schrödinger Equations on Periodic Metric Graphs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 697-714. doi: 10.3934/dcds.2018030

[19]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75

[20]

M. I. Alomar, David Sánchez. Thermopower of a graphene monolayer with inhomogeneous spin-orbit interaction. Conference Publications, 2015, 2015 (special) : 1-9. doi: 10.3934/proc.2015.0001

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]