Advanced Search
Article Contents
Article Contents

Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$

Abstract Related Papers Cited by
  • The Cauchy problem of the 3D Zakharov-Kuznetsov equation $$ u_{t}+\partial_{\tilde{x}_{*,1}}\Delta u +(u^2)_{\tilde{x}_{*,1}}=0, (x,t)\in \mathbb{R}^3 \times \mathbb{R}, \ x=(\tilde{x}_{*,1},\tilde{x}_{*,2},\tilde{x}_{*,3});$$ is considered. It is shown that it is globally well-posed in energy space $H^1(\mathbb{R}^3)$. It answer an open problem: Is it globally well-posed in energy space $H^1 (\mathbb{R}^3)$ for 3D Z-K equtation [10,12,13]?
        Moreover, in 4-D and more higher dimension, it is shown that it is locally well-posed in $H^1(\mathbb{R}^n)$ with $n\geq 4$.
        The method in this paper combine the linear property of the equation (dispersive property) with nonlinear property of the equation (energy inequality). We mainly extend the spaces $\mathbf{F}^s$ and $\mathbf{N}^s$ in one dimension [4] to higher dimension.
    Mathematics Subject Classification: Primary: 35E15; Secondary: 35Q53.


    \begin{equation} \\ \end{equation}
  • [1]

    J. Bourgain, Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equations, part II: the KdV equation, Geom. Funct. Anal., 3 (1993), 107-156.doi: 10.1007/BF01896020.


    A. V. Faminskii, The Cauchy problem for the Zakharov-Kuznetsov equation, Differential Equations, 31 (1995), 1002-1012.


    A. D. Ionescu and C. E. Kenig, Global well-posedness of the Benjamin-Ono equation in low-regularity spaces, J. Amer. Math. Soc., 20 (2007), 753-798.doi: 10.1090/S0894-0347-06-00551-0.


    A. D. Ionescu, C. E. Kenig and D. Tataru, Global well-posedness of the KP-I initial-value problem in the energy space, Invent. Math., 173 (2008), 265-304.doi: 10.1007/s00222-008-0115-0.


    C. E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation, Comm. Pure Appl. Math., 46 (1993), 527-620.doi: 10.1002/cpa.3160460405.


    C. E. Kenig, G. Ponce and L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1-21.doi: 10.1215/S0012-7094-93-07101-3.


    C. E. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 9 (1996), 573-603.doi: 10.1090/S0894-0347-96-00200-7.


    E. A. Kuznetsov and V. E. Zakharov, On three dimensional solitons, Sov. Phys. JETP., 39 (1974), 285-286.


    D. Lannes, F. Linares and J.-C. Saut, The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation, Studies in phase space analysis with applications to PDEs, 181-213, Progr. Nonlinear Differential Equations Appl., 84, Birkhäuser/Springer, New York, 2013.doi: 10.1007/978-1-4614-6348-1_10.


    F. Linares and J.-C. Saut, The Cauchy problem for the 3D Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., 24 (2009), 547-565.doi: 10.3934/dcds.2009.24.547.


    F. Linares and A. Pastor, Local and global well-posedness for the 2D generalized Zakharov-Kuznetsov equation, J. Funct. Anal., 260 (2011), 1060-1085.doi: 10.1016/j.jfa.2010.11.005.


    L. Molinet and D. Pilod, Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications, Ann. Inst. H. Poincaré Anal. Non Linéaire, 32 (2015), 347-371.doi: 10.1016/j.anihpc.2013.12.003.


    F. Ribaud and S. Vento, Well-posedness results for the 3D Zakharov-Kuznetsov equation, SIAM J. Math. Anal., 44 (2012), 2289-2304.doi: 10.1137/110850566.


    T. Tao, Multilinear weighted convolution of $ L^2 $ functions, and applications to nonlinear dispersive equation, Amer. J. Math., 123 (2001), 839-908.doi: 10.1353/ajm.2001.0035.

  • 加载中

Article Metrics

HTML views() PDF downloads(221) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint