December  2016, 9(6): 1899-1912. doi: 10.3934/dcdss.2016077

A global existence and blow-up threshold for Davey-Stewartson equations in $\mathbb{R}^3$

1. 

School of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640, China

2. 

Department of Mathematics, South China University of Technology, Guangzhou, Guangdong 510640

3. 

College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan 453007

Received  July 2015 Revised  September 2016 Published  November 2016

In this paper we study the threshold of global existence and blow-up for the solutions to the generalized 3D Davey-Stewartson equations \begin{equation*} \left\{ \begin{aligned} & iu_t + \Delta u + |u|^{p-1} u + E_1(|u|^2)u = 0, \quad t > 0, \ \ x\in \mathbb{R}^3, \\ & u(0,x) = u_0(x) \in H^1(\mathbb{R}^3), \end{aligned} \right. \end{equation*} where $1 < p < \frac{7}{3}$ and the operator $E_1$ is given by $ E_1(f) = \mathcal {F}^{-1} \left( \frac{\xi_1^2}{|\xi|^2} \mathcal{F}(f) \right) $. We construct two kinds of invariant sets under the evolution flow by analyzing the property of the upper bound function of the energy. Then we show that the solution exists globally for the initial function $u_0$ in first kind of the invariant sets, while the solution blows up in finite time for $u_0$ in another kind. We remark that the exponent $ p $ is subcritical for the nonlinear Schrödinger equations for which blow-up solutions would not occur. The result shows that the occurrence of blow-up phenomenon is caused by the coupling mechanics of the Davey-Stewartson equations.
Citation: Shiming Li, Yongsheng Li, Wei Yan. A global existence and blow-up threshold for Davey-Stewartson equations in $\mathbb{R}^3$. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1899-1912. doi: 10.3934/dcdss.2016077
References:
[1]

D. Anker and N. C. Freeman, On the soliton solutions of the Davey-Stewartson equation for long waves,, Proc. Roy. Soc. London, 360 (1978), 529.  doi: 10.1098/rspa.1978.0083.  Google Scholar

[2]

M. J. Ablowitz and A. S. Fokas, On the inverse scattering transform of multidimensional nonlinear equations related to first-order systems in the plane,, J. Math. Phys., 25 (1984), 2494.  doi: 10.1063/1.526471.  Google Scholar

[3]

R. Cipolatti, On the existence of standing waves for a Davey-Stewartson system,, Commun. Partial Diff. Eqns., 17 (1992), 967.  doi: 10.1080/03605309208820872.  Google Scholar

[4]

R. Cipolatti, On the instability of ground states for a Davey-Stewartson system,, Ann. Inst. H. Poincaré, 58 (1993), 85.   Google Scholar

[5]

V. D. Djordjevic and L. G. Redekopp, On two-dimensional packets of capillary-gravity waves,, J. Fluid Mech., 79 (1977), 703.  doi: 10.1017/S0022112077000408.  Google Scholar

[6]

A. Davey and S. K. Stewartson, On three-dimensional packets of surface waves,, Proc. R. Soc. London, 338 (1974), 101.  doi: 10.1098/rspa.1974.0076.  Google Scholar

[7]

Z. H. Gan and J. Zhang, Sharp threshold of global existence and instability of standing wave for a Davey-Stewartson system,, Commun. Math. Phys., 283 (2008), 93.  doi: 10.1007/s00220-008-0456-y.  Google Scholar

[8]

J. M. Ghidaglia and J. C. Saut, On the initial value problem for the Davey-Stewartson systems,, Nonlinearity, 3 (1990), 475.  doi: 10.1088/0951-7715/3/2/010.  Google Scholar

[9]

N. Godet, A lower bound on the blow-up rate for the Davey-Stewartson system on the torus,, Ann. Inst. H. Poincaré - AN, 30 (2013), 691.  doi: 10.1016/j.anihpc.2012.12.001.  Google Scholar

[10]

B. L. Guo and B. X. Wang, The Cauchy problem for Davey-Stewartson systems,, Commun. Pure Appl. Math., 52 (1999), 1477.  doi: 10.1002/(SICI)1097-0312(199912)52:12<1477::AID-CPA1>3.0.CO;2-N.  Google Scholar

[11]

N. Hayashi, Local existence in time of small solutions to the Davey-Stewartson systems,, Ann. Inst. H. Poincaré, 65 (1996), 313.   Google Scholar

[12]

N. Hayashi and H. Hirata, Global existence and asymptotic behavior in time of small solutions to the elliptic-hyperbolic Davey-Stewartson system,, Nonlinearity, 9 (1996), 1387.  doi: 10.1088/0951-7715/9/6/001.  Google Scholar

[13]

N. Hayashi and J. C. Saut, Global existence of small solutions to the Davey-Stewartson and the Ishimori systems,, Diff. and Integ. Eqns., 8 (1995), 1657.   Google Scholar

[14]

T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited,, Intern. Math. Res. Notices, 46 (2005), 2815.  doi: 10.1155/IMRN.2005.2815.  Google Scholar

[15]

X. G. Li, J. Zhang, S. Y. Lai and Y. H. Wu, The sharp threshold and limiting profile of blow-up solutions for a Davey-Stewartson system,, J. Diff. Eqns., 250 (2011), 2197.  doi: 10.1016/j.jde.2010.10.022.  Google Scholar

[16]

F. Linares and G. Ponce, On the Davey-Stewartson systems,, Ann. Inst. H. Poincaré, 10 (1993), 523.   Google Scholar

[17]

J. Lu and Y. F. Wu, Sharp threshold for scattering of a generalized Davey-Stewartson system in three dimension,, Commun. Pure Appl. Anal., 14 (2015), 1641.  doi: 10.3934/cpaa.2015.14.1641.  Google Scholar

[18]

T. Ozawa, Exact blow-up solutions to Cauchy problem for the Davey-Stewartson system,, Proc. R. Soc. Lond. Ser. A, 436 (1992), 345.  doi: 10.1098/rspa.1992.0022.  Google Scholar

[19]

M. Ohta, Stability of standing waves for the generalized Davey-Stewartson system,, J. Dyn. Diff. Eqns., 6 (1994), 325.  doi: 10.1007/BF02218533.  Google Scholar

[20]

G. Richards, Mass concentration for the Davey-Stewartson system,, Diff. and Integ. Eqns., 24 (2011), 261.   Google Scholar

[21]

J. Shu and J. Zhang, Sharp conditions of global existence for the generalized Davey-Stewartson system,, IMA J. Appl. Math., 72 (2007), 36.  doi: 10.1093/imamat/hxl029.  Google Scholar

[22]

M. Tsutsumi, Decay of weak solutions to the Davey-Stewartson systems,, J. Math. Anal. Appl., 182 (1994), 680.  doi: 10.1006/jmaa.1994.1113.  Google Scholar

[23]

B. X. Wang and B. L. Guo, On the initial value problem and scattering of solutions for the generalized Davey-Stewartson systems,, Sci. China Ser. A, 44 (2001), 994.  doi: 10.1007/BF02878975.  Google Scholar

[24]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Commun. Math. Phys., 87 (1983), 567.   Google Scholar

[25]

H. Yang, X. M. Fan and S. H. Zhu, Global analysis for rough solutions to the Davey- Stewartson system,, Abstract and Appl. Anal., 2012 (2012).   Google Scholar

[26]

J. Zhang and S. Zhu, Sharp blow-up criteria for the Davey-Stewartson system in $\mathbbR^3 $,, Dyn. Partial Diff. Eqns., 8 (2011), 239.  doi: 10.4310/DPDE.2011.v8.n3.a4.  Google Scholar

[27]

S. H. Zhu, Blow-up dynamics of $L^2$ solutions for the Davey-Stewartson system,, Acta Math. Sinica, 31 (2015), 411.  doi: 10.1007/s10114-015-4349-7.  Google Scholar

show all references

References:
[1]

D. Anker and N. C. Freeman, On the soliton solutions of the Davey-Stewartson equation for long waves,, Proc. Roy. Soc. London, 360 (1978), 529.  doi: 10.1098/rspa.1978.0083.  Google Scholar

[2]

M. J. Ablowitz and A. S. Fokas, On the inverse scattering transform of multidimensional nonlinear equations related to first-order systems in the plane,, J. Math. Phys., 25 (1984), 2494.  doi: 10.1063/1.526471.  Google Scholar

[3]

R. Cipolatti, On the existence of standing waves for a Davey-Stewartson system,, Commun. Partial Diff. Eqns., 17 (1992), 967.  doi: 10.1080/03605309208820872.  Google Scholar

[4]

R. Cipolatti, On the instability of ground states for a Davey-Stewartson system,, Ann. Inst. H. Poincaré, 58 (1993), 85.   Google Scholar

[5]

V. D. Djordjevic and L. G. Redekopp, On two-dimensional packets of capillary-gravity waves,, J. Fluid Mech., 79 (1977), 703.  doi: 10.1017/S0022112077000408.  Google Scholar

[6]

A. Davey and S. K. Stewartson, On three-dimensional packets of surface waves,, Proc. R. Soc. London, 338 (1974), 101.  doi: 10.1098/rspa.1974.0076.  Google Scholar

[7]

Z. H. Gan and J. Zhang, Sharp threshold of global existence and instability of standing wave for a Davey-Stewartson system,, Commun. Math. Phys., 283 (2008), 93.  doi: 10.1007/s00220-008-0456-y.  Google Scholar

[8]

J. M. Ghidaglia and J. C. Saut, On the initial value problem for the Davey-Stewartson systems,, Nonlinearity, 3 (1990), 475.  doi: 10.1088/0951-7715/3/2/010.  Google Scholar

[9]

N. Godet, A lower bound on the blow-up rate for the Davey-Stewartson system on the torus,, Ann. Inst. H. Poincaré - AN, 30 (2013), 691.  doi: 10.1016/j.anihpc.2012.12.001.  Google Scholar

[10]

B. L. Guo and B. X. Wang, The Cauchy problem for Davey-Stewartson systems,, Commun. Pure Appl. Math., 52 (1999), 1477.  doi: 10.1002/(SICI)1097-0312(199912)52:12<1477::AID-CPA1>3.0.CO;2-N.  Google Scholar

[11]

N. Hayashi, Local existence in time of small solutions to the Davey-Stewartson systems,, Ann. Inst. H. Poincaré, 65 (1996), 313.   Google Scholar

[12]

N. Hayashi and H. Hirata, Global existence and asymptotic behavior in time of small solutions to the elliptic-hyperbolic Davey-Stewartson system,, Nonlinearity, 9 (1996), 1387.  doi: 10.1088/0951-7715/9/6/001.  Google Scholar

[13]

N. Hayashi and J. C. Saut, Global existence of small solutions to the Davey-Stewartson and the Ishimori systems,, Diff. and Integ. Eqns., 8 (1995), 1657.   Google Scholar

[14]

T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equations revisited,, Intern. Math. Res. Notices, 46 (2005), 2815.  doi: 10.1155/IMRN.2005.2815.  Google Scholar

[15]

X. G. Li, J. Zhang, S. Y. Lai and Y. H. Wu, The sharp threshold and limiting profile of blow-up solutions for a Davey-Stewartson system,, J. Diff. Eqns., 250 (2011), 2197.  doi: 10.1016/j.jde.2010.10.022.  Google Scholar

[16]

F. Linares and G. Ponce, On the Davey-Stewartson systems,, Ann. Inst. H. Poincaré, 10 (1993), 523.   Google Scholar

[17]

J. Lu and Y. F. Wu, Sharp threshold for scattering of a generalized Davey-Stewartson system in three dimension,, Commun. Pure Appl. Anal., 14 (2015), 1641.  doi: 10.3934/cpaa.2015.14.1641.  Google Scholar

[18]

T. Ozawa, Exact blow-up solutions to Cauchy problem for the Davey-Stewartson system,, Proc. R. Soc. Lond. Ser. A, 436 (1992), 345.  doi: 10.1098/rspa.1992.0022.  Google Scholar

[19]

M. Ohta, Stability of standing waves for the generalized Davey-Stewartson system,, J. Dyn. Diff. Eqns., 6 (1994), 325.  doi: 10.1007/BF02218533.  Google Scholar

[20]

G. Richards, Mass concentration for the Davey-Stewartson system,, Diff. and Integ. Eqns., 24 (2011), 261.   Google Scholar

[21]

J. Shu and J. Zhang, Sharp conditions of global existence for the generalized Davey-Stewartson system,, IMA J. Appl. Math., 72 (2007), 36.  doi: 10.1093/imamat/hxl029.  Google Scholar

[22]

M. Tsutsumi, Decay of weak solutions to the Davey-Stewartson systems,, J. Math. Anal. Appl., 182 (1994), 680.  doi: 10.1006/jmaa.1994.1113.  Google Scholar

[23]

B. X. Wang and B. L. Guo, On the initial value problem and scattering of solutions for the generalized Davey-Stewartson systems,, Sci. China Ser. A, 44 (2001), 994.  doi: 10.1007/BF02878975.  Google Scholar

[24]

M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates,, Commun. Math. Phys., 87 (1983), 567.   Google Scholar

[25]

H. Yang, X. M. Fan and S. H. Zhu, Global analysis for rough solutions to the Davey- Stewartson system,, Abstract and Appl. Anal., 2012 (2012).   Google Scholar

[26]

J. Zhang and S. Zhu, Sharp blow-up criteria for the Davey-Stewartson system in $\mathbbR^3 $,, Dyn. Partial Diff. Eqns., 8 (2011), 239.  doi: 10.4310/DPDE.2011.v8.n3.a4.  Google Scholar

[27]

S. H. Zhu, Blow-up dynamics of $L^2$ solutions for the Davey-Stewartson system,, Acta Math. Sinica, 31 (2015), 411.  doi: 10.1007/s10114-015-4349-7.  Google Scholar

[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[2]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[3]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[4]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[5]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[6]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[7]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[8]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[9]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[10]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[11]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[12]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[13]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[14]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[15]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[16]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[17]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[18]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[19]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[20]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]