December  2016, 9(6): 1913-1937. doi: 10.3934/dcdss.2016078

Well-posedness for the three-dimensional compressible liquid crystal flows

1. 

College of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. 

Institute of Applied Physics & Computational Math., Beijing 100088

Received  July 2015 Revised  September 2016 Published  November 2016

This paper is concerned with the initial-boundary value problem for the three-dimensional compressible liquid crystal flows. The system consists of the Navier-Stokes equations describing the evolution of a compressible viscous fluid coupled with various kinematic transport equations for the heat flow of harmonic maps into $\mathbb{S}^2$. Assuming the initial density has vacuum and the initial data satisfies a natural compatibility condition, the existence and uniqueness is established for the local strong solution with large initial data and also for the global strong solution with initial data being close to an equilibrium state. The existence result is proved via the local well-posedness and uniform estimates for a proper linearized system with convective terms.
Citation: Xiaoli Li, Boling Guo. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1913-1937. doi: 10.3934/dcdss.2016078
References:
[1]

K. C. Chang, W. Y. Ding and R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces,, J. Diff. Geom., 36 (1992), 507.   Google Scholar

[2]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids,, J. Diff. Equations, 190 (2003), 504.  doi: 10.1016/S0022-0396(03)00015-9.  Google Scholar

[3]

Y. Cho, H. J. Choe and H. Kim, Unique solvability of the initial boundary value prob lems for compressible viscous fluids,, J. Math. Pures Appl., 83 (2004), 243.  doi: 10.1016/j.matpur.2003.11.004.  Google Scholar

[4]

Y. Cho and H. Kim, Existence results for viscous polytropic fluids with vacuum,, J. Diff. Equations, 228 (2006), 377.  doi: 10.1016/j.jde.2006.05.001.  Google Scholar

[5]

S. Ding, C. Wang and H. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one,, Discrete Conti. Dyna. Sys. Ser. B, 15 (2011), 357.  doi: 10.3934/dcdsb.2011.15.357.  Google Scholar

[6]

S. Ding, J. Lin, C. Wang and H. Wen, Compressible hydrodynamic flow of liquid crystals in 1-D,, Discrete Conti. Dyna. Sys., 32 (2012), 539.  doi: 10.3934/dcds.2012.32.539.  Google Scholar

[7]

J. Ericksen, Conservation laws for liquid crystals,, Trans. Soc. Rheol., 5 (1961), 22.  doi: 10.1122/1.548883.  Google Scholar

[8]

J. Ericksen, Equilibrium theory for liquid crystals, in: G. Brown (Ed.),, Advances in Liquid Crystals, 2 (1976), 233.  doi: 10.1016/B978-0-12-025002-8.50012-9.  Google Scholar

[9]

J. Ericksen, Continuum theory of nematic liquid crystals,, Molecular Crystals, 7 (2007), 153.  doi: 10.1080/15421406908084869.  Google Scholar

[10]

M. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two,, Calc. Var. Partial Diff. Equations, 40 (2011), 15.  doi: 10.1007/s00526-010-0331-5.  Google Scholar

[11]

X. Hu and H. Wu, Global solution to the three-dimensional compressible flow of liquid crystals,, SIAM J. Math. Anal., 45 (2013), 2678.  doi: 10.1137/120898814.  Google Scholar

[12]

T. Huang, C. Wang and H. Wen, Strong solutions of the compressible nematic liquid crystal flow,, J. Diff. Equations, 252 (2012), 2222.  doi: 10.1016/j.jde.2011.07.036.  Google Scholar

[13]

T. Huang, C. Wang and H. Wen, Blow up criterion for compressible nematic liquid crystal flows in dimension three,, Arch. Rational Mech. Anal., 204 (2012), 285.  doi: 10.1007/s00205-011-0476-1.  Google Scholar

[14]

F. Jiang and Z. Tan, Global weak solution to the flow of liquid crystals system,, Math. Meth. Appl. Sci., 32 (2009), 2243.  doi: 10.1002/mma.1132.  Google Scholar

[15]

F. M. Leslie, Theory of flow phenomena in liquid crystals, in: G. Brown (Ed.),, Advances in Liquid Crystals, 4 (1979), 1.  doi: 10.1016/B978-0-12-025004-2.50008-9.  Google Scholar

[16]

X. Li and D. Wang, Global strong solution to the density-dependent incompressible flow of liquid crystals,, Trans. Amer. Math. Soc., 367 (2015), 2301.  doi: 10.1090/S0002-9947-2014-05924-2.  Google Scholar

[17]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystal: Phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789.  doi: 10.1002/cpa.3160420605.  Google Scholar

[18]

F. H. Lin, Existence of solutions for the Ericksen-Leslie system,, Arch. Rat. Mech. Anal., 154 (2000), 135.  doi: 10.1007/s002050000102.  Google Scholar

[19]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[20]

F. H. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals,, Discrete Conti. Dyna. Sys., 2 (1996), 1.   Google Scholar

[21]

F. H. Lin, J. Lin and C. Wang, Liquid crystal flows in two dimensions,, Arch. Ration. Mech. Anal., 197 (2010), 297.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[22]

C. Liu, Dynamic theory for incompressible smectic-A liquid crystals,, Discrete Conti. Dyna. Sys., 6 (2000), 591.  doi: 10.3934/dcds.2000.6.591.  Google Scholar

[23]

X. Liu, L. Liu and Y. Hao, Existence of strong solutions for the compressible Ericksen-Leslie model,, , ().   Google Scholar

[24]

X. Liu and Z. Zhang, {Existence of the flow of liquid crystals system,, Chinese Ann. Math., 30 (2009), 1.   Google Scholar

[25]

S. Shkoller, Well-posedness and global attractors for liquid crystals on Riemannian manifolds,, Comm. Partial Diff. Equations, 27 (2001), 1103.  doi: 10.1081/PDE-120004895.  Google Scholar

[26]

C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data,, Arch. Ration. Mech. Anal., 200 (2011), 1.  doi: 10.1007/s00205-010-0343-5.  Google Scholar

[27]

H. Wen and S. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals,, Nonlinear Analysis: Real World Applications, 12 (2011), 1510.  doi: 10.1016/j.nonrwa.2010.10.010.  Google Scholar

show all references

References:
[1]

K. C. Chang, W. Y. Ding and R. Ye, Finite-time blow-up of the heat flow of harmonic maps from surfaces,, J. Diff. Geom., 36 (1992), 507.   Google Scholar

[2]

H. J. Choe and H. Kim, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids,, J. Diff. Equations, 190 (2003), 504.  doi: 10.1016/S0022-0396(03)00015-9.  Google Scholar

[3]

Y. Cho, H. J. Choe and H. Kim, Unique solvability of the initial boundary value prob lems for compressible viscous fluids,, J. Math. Pures Appl., 83 (2004), 243.  doi: 10.1016/j.matpur.2003.11.004.  Google Scholar

[4]

Y. Cho and H. Kim, Existence results for viscous polytropic fluids with vacuum,, J. Diff. Equations, 228 (2006), 377.  doi: 10.1016/j.jde.2006.05.001.  Google Scholar

[5]

S. Ding, C. Wang and H. Wen, Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one,, Discrete Conti. Dyna. Sys. Ser. B, 15 (2011), 357.  doi: 10.3934/dcdsb.2011.15.357.  Google Scholar

[6]

S. Ding, J. Lin, C. Wang and H. Wen, Compressible hydrodynamic flow of liquid crystals in 1-D,, Discrete Conti. Dyna. Sys., 32 (2012), 539.  doi: 10.3934/dcds.2012.32.539.  Google Scholar

[7]

J. Ericksen, Conservation laws for liquid crystals,, Trans. Soc. Rheol., 5 (1961), 22.  doi: 10.1122/1.548883.  Google Scholar

[8]

J. Ericksen, Equilibrium theory for liquid crystals, in: G. Brown (Ed.),, Advances in Liquid Crystals, 2 (1976), 233.  doi: 10.1016/B978-0-12-025002-8.50012-9.  Google Scholar

[9]

J. Ericksen, Continuum theory of nematic liquid crystals,, Molecular Crystals, 7 (2007), 153.  doi: 10.1080/15421406908084869.  Google Scholar

[10]

M. Hong, Global existence of solutions of the simplified Ericksen-Leslie system in dimension two,, Calc. Var. Partial Diff. Equations, 40 (2011), 15.  doi: 10.1007/s00526-010-0331-5.  Google Scholar

[11]

X. Hu and H. Wu, Global solution to the three-dimensional compressible flow of liquid crystals,, SIAM J. Math. Anal., 45 (2013), 2678.  doi: 10.1137/120898814.  Google Scholar

[12]

T. Huang, C. Wang and H. Wen, Strong solutions of the compressible nematic liquid crystal flow,, J. Diff. Equations, 252 (2012), 2222.  doi: 10.1016/j.jde.2011.07.036.  Google Scholar

[13]

T. Huang, C. Wang and H. Wen, Blow up criterion for compressible nematic liquid crystal flows in dimension three,, Arch. Rational Mech. Anal., 204 (2012), 285.  doi: 10.1007/s00205-011-0476-1.  Google Scholar

[14]

F. Jiang and Z. Tan, Global weak solution to the flow of liquid crystals system,, Math. Meth. Appl. Sci., 32 (2009), 2243.  doi: 10.1002/mma.1132.  Google Scholar

[15]

F. M. Leslie, Theory of flow phenomena in liquid crystals, in: G. Brown (Ed.),, Advances in Liquid Crystals, 4 (1979), 1.  doi: 10.1016/B978-0-12-025004-2.50008-9.  Google Scholar

[16]

X. Li and D. Wang, Global strong solution to the density-dependent incompressible flow of liquid crystals,, Trans. Amer. Math. Soc., 367 (2015), 2301.  doi: 10.1090/S0002-9947-2014-05924-2.  Google Scholar

[17]

F. H. Lin, Nonlinear theory of defects in nematic liquid crystal: Phase transition and flow phenomena,, Comm. Pure Appl. Math., 42 (1989), 789.  doi: 10.1002/cpa.3160420605.  Google Scholar

[18]

F. H. Lin, Existence of solutions for the Ericksen-Leslie system,, Arch. Rat. Mech. Anal., 154 (2000), 135.  doi: 10.1007/s002050000102.  Google Scholar

[19]

F. H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[20]

F. H. Lin and C. Liu, Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals,, Discrete Conti. Dyna. Sys., 2 (1996), 1.   Google Scholar

[21]

F. H. Lin, J. Lin and C. Wang, Liquid crystal flows in two dimensions,, Arch. Ration. Mech. Anal., 197 (2010), 297.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[22]

C. Liu, Dynamic theory for incompressible smectic-A liquid crystals,, Discrete Conti. Dyna. Sys., 6 (2000), 591.  doi: 10.3934/dcds.2000.6.591.  Google Scholar

[23]

X. Liu, L. Liu and Y. Hao, Existence of strong solutions for the compressible Ericksen-Leslie model,, , ().   Google Scholar

[24]

X. Liu and Z. Zhang, {Existence of the flow of liquid crystals system,, Chinese Ann. Math., 30 (2009), 1.   Google Scholar

[25]

S. Shkoller, Well-posedness and global attractors for liquid crystals on Riemannian manifolds,, Comm. Partial Diff. Equations, 27 (2001), 1103.  doi: 10.1081/PDE-120004895.  Google Scholar

[26]

C. Wang, Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data,, Arch. Ration. Mech. Anal., 200 (2011), 1.  doi: 10.1007/s00205-010-0343-5.  Google Scholar

[27]

H. Wen and S. Ding, Solutions of incompressible hydrodynamic flow of liquid crystals,, Nonlinear Analysis: Real World Applications, 12 (2011), 1510.  doi: 10.1016/j.nonrwa.2010.10.010.  Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[3]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[4]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[5]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[6]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[7]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[8]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[9]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[10]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[11]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[12]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[13]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]