December  2016, 9(6): 1939-1957. doi: 10.3934/dcdss.2016079

Existence, regularity and approximation of global attractors for weakly dissipative p-Laplace equations

1. 

School of Mathematics and Statistics, Southwest University, Chongqing 400715

Received  June 2015 Revised  August 2016 Published  November 2016

A global attractor in $L^2$ is shown for weakly dissipative $p$-Laplace equations on the entire Euclid space, where the weak dissipativeness means that the order of the source is lesser than $p-1$. Half-time decomposition and induction techniques are utilized to present the tail estimate outside a ball. It is also proved that the equations in both strongly and weakly dissipative cases possess an $(L^2,L^r)$-attractor for $r$ belonging to a special interval, which contains the critical exponent $p$. The obtained attractor is proved to be approximated by the corresponding attractor inside a ball in the sense of upper strictly and lower semicontinuity.
Citation: Yangrong Li, Jinyan Yin. Existence, regularity and approximation of global attractors for weakly dissipative p-Laplace equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1939-1957. doi: 10.3934/dcdss.2016079
References:
[1]

P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains,, J. Differ. Equ., 246 (2009), 845. doi: 10.1016/j.jde.2008.05.017. Google Scholar

[2]

P. W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems,, International J. Bifur. Chaos, 11 (2001), 143. doi: 10.1142/S0218127401002031. Google Scholar

[3]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractor for Infinite-dimensional Non-autonomous Dynamical Systems,, Appl. Math. Sciences, (2013). doi: 10.1007/978-1-4614-4581-4. Google Scholar

[4]

B. Gess, W. Liu and M. Rockner, Random attractors for a class of stochastic partial differential equations driven by general additive noise,, J. Differ. Equ., 251 (2011), 1225. doi: 10.1016/j.jde.2011.02.013. Google Scholar

[5]

B. Gess, Random attractors for degenerate stochastic partial differential equations,, J. Dyn. Differ. Equ., 25 (2013), 121. doi: 10.1007/s10884-013-9294-5. Google Scholar

[6]

B. Gess, Random attractors for singular stochastic evolution equations,, J. Differ. Equ., 255 (2013), 524. doi: 10.1016/j.jde.2013.04.023. Google Scholar

[7]

B. Gess, Random attractors for stochastic porous media equations perturbed by space-time linear multiplicative noise,, Annals Probability, 42 (2014), 818. doi: 10.1214/13-AOP869. Google Scholar

[8]

A. K. Khanmamedov, Existence of a global attractor for the parabolic equation with nonlinear Laplacian principal part in an unbounded domain,, J. Math. Anal. Appl., 316 (2006), 601. doi: 10.1016/j.jmaa.2005.05.003. Google Scholar

[9]

A. K. Khanmamedov, Global attractors for one dimensional p-Laplacian equation,, Nonlinear Anal. TMA, 71 (2009), 155. doi: 10.1016/j.na.2008.10.037. Google Scholar

[10]

P. G. Geredeli and A. Khanmamedov, Long-time dynamics of the parabolic p-Laplacian equation,, Commun Pure Appl Anal, 12 (2013), 735. doi: 10.3934/cpaa.2013.12.735. Google Scholar

[11]

A. Krause, M. Lewis and B. Wang, Dynamics of the non-autonomous stochastic p-Laplace equation driven by multiplicative noise,, Appl. Math. Comput., 246 (2014), 365. doi: 10.1016/j.amc.2014.08.033. Google Scholar

[12]

A. Krause and B. Wang, Pullback attractors of non-autonomous stochastic degenerate parabolic equations on unbounded domains,, J. Math. Anal. Appl., 417 (2014), 1018. doi: 10.1016/j.jmaa.2014.03.037. Google Scholar

[13]

J. Li, Y. R. Li and B. Wang, Random attractors of reaction-diffusion equations with multiplicative noise in $L^p$,, Appl. Math. Comput., 215 (2010), 3399. doi: 10.1016/j.amc.2009.10.033. Google Scholar

[14]

J. Li, Y. R. Li and H. Y. Cui, Existence and upper semicontinuity of random attractors for stochastic p-Laplacian equations on unbounded domains,, Electronic J. Differ. Equ., 2014 (2014), 1. Google Scholar

[15]

Y. R. Li, A. H. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations,, J. Differ. Equ., 258 (2015), 504. doi: 10.1016/j.jde.2014.09.021. Google Scholar

[16]

Y. R. Li, H. Y. Cui and J. Li, Upper semi-continuouity and regularity of random attractors on p-times integrable spaces and applications,, Nonlinear Anal. TMA, 109 (2014), 33. doi: 10.1016/j.na.2014.06.013. Google Scholar

[17]

Y. R. Li and B. L. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations,, J. Differ. Equ., 245 (2008), 1775. doi: 10.1016/j.jde.2008.06.031. Google Scholar

[18]

Y. R. Li and J. Y. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo equations,, Discrete Contin. Dyn. Syst. B, 21 (2016), 1203. doi: 10.3934/dcdsb.2016.21.1203. Google Scholar

[19]

T. F. Ma and M. L. Pelicer, Attractors for weakly damped beam equations with p-Laplacian,, Discrete Contin. Dyn. Sys., (2013), 525. doi: 10.3934/proc.2013.2013.525. Google Scholar

[20]

J. Simsen, A note on p-Laplacian parabolic problems in R-n,, Nonliear Anal. TMA, 75 (2012), 6620. doi: 10.1016/j.na.2012.08.007. Google Scholar

[21]

J. Simsen, M. J. D. Nascimento and M. S. Simsen, Existence and upper semicontinuity of pullback attractors for non-autonomous p-Laplacian parabolic problems,, J. Math. Anal. Appl., 413 (2014), 685. doi: 10.1016/j.jmaa.2013.12.019. Google Scholar

[22]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems,, J. Differ. Equ., 253 (2012), 1544. doi: 10.1016/j.jde.2012.05.015. Google Scholar

[23]

B. Wang and B. Guo, Asymptotic behavior of non-autonomous stochastic equations with nonlinear Laplacian principal part,, Electronic J. Differ. Equ., 191 (2013), 1. Google Scholar

[24]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Second ed., (1997). doi: 10.1007/978-1-4612-0645-3. Google Scholar

[25]

G. L. Wang, B. L.Guo and Y. R. Li, The asymptotic behavior of the stochastic Ginzburg-Landou equation with additive noise,, Appl. Math. Comput., 198 (2008), 849. doi: 10.1016/j.amc.2007.09.029. Google Scholar

[26]

Z. Wang and S. Zhou, Random attractors for stochastic reaction-diffusion equations with multiplicative noise on unbounded domains,, J. Math. Anal. Appl., 384 (2011), 160. doi: 10.1016/j.jmaa.2011.02.082. Google Scholar

[27]

M. Yang, C. Sun and C. Zhong, Global attractors for $p$-Laplacian equation,, J. Math. Anal. Appl., 327 (2007), 1130. doi: 10.1016/j.jmaa.2006.04.085. Google Scholar

[28]

X. Yan and C. Zhong, $L^p$-uniform attractor for nonautonomous reaction-diffusion equations in unbounded domains,, J. Math. Phys., 49 (2008). doi: 10.1063/1.3000575. Google Scholar

[29]

J. Y. Yin, Y. R. Li and H. J. Zhao, Random attractors for stochastic semi-linear degenerate parabolic equations with addtive noise in $L^q$,, Appl. Math. Comput., 225 (2013), 526. doi: 10.1016/j.amc.2013.09.051. Google Scholar

[30]

W. Q. Zhao, Regularity of random attractors for a degenerate parabolic equations driven by additive noise,, Appl. Math. Comput., 239 (2014), 358. doi: 10.1016/j.amc.2014.04.106. Google Scholar

[31]

W. Zhao and Y. R. Li, $(L^2,L^p)$-random attractors for stochastic reaction-diffusion on unbounded domains,, Nonlinear Anal. TMA, 75 (2012), 485. doi: 10.1016/j.na.2011.08.050. Google Scholar

[32]

W. Q. Zhao and Y. R. Li, Existence of random attractors for a $p$-Laplacian-type equation with additive noise,, Abstr. Appl. Anal., 10 (2011). doi: 10.1155/2011/616451. Google Scholar

[33]

W. Q. Zhao and Y. R. Li, Random attractors for stochastic semi-linear degenerate parabolic equations with additive noises,, Dyn. Partial Differ. Equ., 11 (2014), 269. doi: 10.4310/DPDE.2014.v11.n3.a4. Google Scholar

[34]

C. Zhong, M. Yang and C. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations,, J. Differ. Equ., 223 (2006), 367. doi: 10.1016/j.jde.2005.06.008. Google Scholar

show all references

References:
[1]

P. W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains,, J. Differ. Equ., 246 (2009), 845. doi: 10.1016/j.jde.2008.05.017. Google Scholar

[2]

P. W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems,, International J. Bifur. Chaos, 11 (2001), 143. doi: 10.1142/S0218127401002031. Google Scholar

[3]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractor for Infinite-dimensional Non-autonomous Dynamical Systems,, Appl. Math. Sciences, (2013). doi: 10.1007/978-1-4614-4581-4. Google Scholar

[4]

B. Gess, W. Liu and M. Rockner, Random attractors for a class of stochastic partial differential equations driven by general additive noise,, J. Differ. Equ., 251 (2011), 1225. doi: 10.1016/j.jde.2011.02.013. Google Scholar

[5]

B. Gess, Random attractors for degenerate stochastic partial differential equations,, J. Dyn. Differ. Equ., 25 (2013), 121. doi: 10.1007/s10884-013-9294-5. Google Scholar

[6]

B. Gess, Random attractors for singular stochastic evolution equations,, J. Differ. Equ., 255 (2013), 524. doi: 10.1016/j.jde.2013.04.023. Google Scholar

[7]

B. Gess, Random attractors for stochastic porous media equations perturbed by space-time linear multiplicative noise,, Annals Probability, 42 (2014), 818. doi: 10.1214/13-AOP869. Google Scholar

[8]

A. K. Khanmamedov, Existence of a global attractor for the parabolic equation with nonlinear Laplacian principal part in an unbounded domain,, J. Math. Anal. Appl., 316 (2006), 601. doi: 10.1016/j.jmaa.2005.05.003. Google Scholar

[9]

A. K. Khanmamedov, Global attractors for one dimensional p-Laplacian equation,, Nonlinear Anal. TMA, 71 (2009), 155. doi: 10.1016/j.na.2008.10.037. Google Scholar

[10]

P. G. Geredeli and A. Khanmamedov, Long-time dynamics of the parabolic p-Laplacian equation,, Commun Pure Appl Anal, 12 (2013), 735. doi: 10.3934/cpaa.2013.12.735. Google Scholar

[11]

A. Krause, M. Lewis and B. Wang, Dynamics of the non-autonomous stochastic p-Laplace equation driven by multiplicative noise,, Appl. Math. Comput., 246 (2014), 365. doi: 10.1016/j.amc.2014.08.033. Google Scholar

[12]

A. Krause and B. Wang, Pullback attractors of non-autonomous stochastic degenerate parabolic equations on unbounded domains,, J. Math. Anal. Appl., 417 (2014), 1018. doi: 10.1016/j.jmaa.2014.03.037. Google Scholar

[13]

J. Li, Y. R. Li and B. Wang, Random attractors of reaction-diffusion equations with multiplicative noise in $L^p$,, Appl. Math. Comput., 215 (2010), 3399. doi: 10.1016/j.amc.2009.10.033. Google Scholar

[14]

J. Li, Y. R. Li and H. Y. Cui, Existence and upper semicontinuity of random attractors for stochastic p-Laplacian equations on unbounded domains,, Electronic J. Differ. Equ., 2014 (2014), 1. Google Scholar

[15]

Y. R. Li, A. H. Gu and J. Li, Existence and continuity of bi-spatial random attractors and application to stochastic semilinear Laplacian equations,, J. Differ. Equ., 258 (2015), 504. doi: 10.1016/j.jde.2014.09.021. Google Scholar

[16]

Y. R. Li, H. Y. Cui and J. Li, Upper semi-continuouity and regularity of random attractors on p-times integrable spaces and applications,, Nonlinear Anal. TMA, 109 (2014), 33. doi: 10.1016/j.na.2014.06.013. Google Scholar

[17]

Y. R. Li and B. L. Guo, Random attractors for quasi-continuous random dynamical systems and applications to stochastic reaction-diffusion equations,, J. Differ. Equ., 245 (2008), 1775. doi: 10.1016/j.jde.2008.06.031. Google Scholar

[18]

Y. R. Li and J. Y. Yin, A modified proof of pullback attractors in a Sobolev space for stochastic Fitzhugh-Nagumo equations,, Discrete Contin. Dyn. Syst. B, 21 (2016), 1203. doi: 10.3934/dcdsb.2016.21.1203. Google Scholar

[19]

T. F. Ma and M. L. Pelicer, Attractors for weakly damped beam equations with p-Laplacian,, Discrete Contin. Dyn. Sys., (2013), 525. doi: 10.3934/proc.2013.2013.525. Google Scholar

[20]

J. Simsen, A note on p-Laplacian parabolic problems in R-n,, Nonliear Anal. TMA, 75 (2012), 6620. doi: 10.1016/j.na.2012.08.007. Google Scholar

[21]

J. Simsen, M. J. D. Nascimento and M. S. Simsen, Existence and upper semicontinuity of pullback attractors for non-autonomous p-Laplacian parabolic problems,, J. Math. Anal. Appl., 413 (2014), 685. doi: 10.1016/j.jmaa.2013.12.019. Google Scholar

[22]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems,, J. Differ. Equ., 253 (2012), 1544. doi: 10.1016/j.jde.2012.05.015. Google Scholar

[23]

B. Wang and B. Guo, Asymptotic behavior of non-autonomous stochastic equations with nonlinear Laplacian principal part,, Electronic J. Differ. Equ., 191 (2013), 1. Google Scholar

[24]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Second ed., (1997). doi: 10.1007/978-1-4612-0645-3. Google Scholar

[25]

G. L. Wang, B. L.Guo and Y. R. Li, The asymptotic behavior of the stochastic Ginzburg-Landou equation with additive noise,, Appl. Math. Comput., 198 (2008), 849. doi: 10.1016/j.amc.2007.09.029. Google Scholar

[26]

Z. Wang and S. Zhou, Random attractors for stochastic reaction-diffusion equations with multiplicative noise on unbounded domains,, J. Math. Anal. Appl., 384 (2011), 160. doi: 10.1016/j.jmaa.2011.02.082. Google Scholar

[27]

M. Yang, C. Sun and C. Zhong, Global attractors for $p$-Laplacian equation,, J. Math. Anal. Appl., 327 (2007), 1130. doi: 10.1016/j.jmaa.2006.04.085. Google Scholar

[28]

X. Yan and C. Zhong, $L^p$-uniform attractor for nonautonomous reaction-diffusion equations in unbounded domains,, J. Math. Phys., 49 (2008). doi: 10.1063/1.3000575. Google Scholar

[29]

J. Y. Yin, Y. R. Li and H. J. Zhao, Random attractors for stochastic semi-linear degenerate parabolic equations with addtive noise in $L^q$,, Appl. Math. Comput., 225 (2013), 526. doi: 10.1016/j.amc.2013.09.051. Google Scholar

[30]

W. Q. Zhao, Regularity of random attractors for a degenerate parabolic equations driven by additive noise,, Appl. Math. Comput., 239 (2014), 358. doi: 10.1016/j.amc.2014.04.106. Google Scholar

[31]

W. Zhao and Y. R. Li, $(L^2,L^p)$-random attractors for stochastic reaction-diffusion on unbounded domains,, Nonlinear Anal. TMA, 75 (2012), 485. doi: 10.1016/j.na.2011.08.050. Google Scholar

[32]

W. Q. Zhao and Y. R. Li, Existence of random attractors for a $p$-Laplacian-type equation with additive noise,, Abstr. Appl. Anal., 10 (2011). doi: 10.1155/2011/616451. Google Scholar

[33]

W. Q. Zhao and Y. R. Li, Random attractors for stochastic semi-linear degenerate parabolic equations with additive noises,, Dyn. Partial Differ. Equ., 11 (2014), 269. doi: 10.4310/DPDE.2014.v11.n3.a4. Google Scholar

[34]

C. Zhong, M. Yang and C. Sun, The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations,, J. Differ. Equ., 223 (2006), 367. doi: 10.1016/j.jde.2005.06.008. Google Scholar

[1]

Jacson Simsen, José Valero. Global attractors for $p$-Laplacian differential inclusions in unbounded domains. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3239-3267. doi: 10.3934/dcdsb.2016096

[2]

Bixiang Wang, Xiaoling Gao. Random attractors for wave equations on unbounded domains. Conference Publications, 2009, 2009 (Special) : 800-809. doi: 10.3934/proc.2009.2009.800

[3]

Ming Wang, Yanbin Tang. Attractors in $H^2$ and $L^{2p-2}$ for reaction diffusion equations on unbounded domains. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1111-1121. doi: 10.3934/cpaa.2013.12.1111

[4]

Monica Conti, Vittorino Pata. On the regularity of global attractors. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1209-1217. doi: 10.3934/dcds.2009.25.1209

[5]

Yonghai Wang. On the upper semicontinuity of pullback attractors with applications to plate equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1653-1673. doi: 10.3934/cpaa.2010.9.1653

[6]

Bao Quoc Tang. Regularity of pullback random attractors for stochastic FitzHugh-Nagumo system on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 441-466. doi: 10.3934/dcds.2015.35.441

[7]

Hong Lu, Jiangang Qi, Bixiang Wang, Mingji Zhang. Random attractors for non-autonomous fractional stochastic parabolic equations on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 683-706. doi: 10.3934/dcds.2019028

[8]

Zhijian Yang, Yanan Li. Upper semicontinuity of pullback attractors for non-autonomous Kirchhoff wave equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4899-4912. doi: 10.3934/dcdsb.2019036

[9]

Dalibor Pražák, Jakub Slavík. Attractors and entropy bounds for a nonlinear RDEs with distributed delay in unbounded domains. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1259-1277. doi: 10.3934/dcdsb.2016.21.1259

[10]

T. F. Ma, M. L. Pelicer. Attractors for weakly damped beam equations with $p$-Laplacian. Conference Publications, 2013, 2013 (special) : 525-534. doi: 10.3934/proc.2013.2013.525

[11]

Linfang Liu, Xianlong Fu. Existence and upper semicontinuity of (L2, Lq) pullback attractors for a stochastic p-laplacian equation. Communications on Pure & Applied Analysis, 2017, 6 (2) : 443-474. doi: 10.3934/cpaa.2017023

[12]

María Anguiano, Tomás Caraballo, José Real, José Valero. Pullback attractors for reaction-diffusion equations in some unbounded domains with an $H^{-1}$-valued non-autonomous forcing term and without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 307-326. doi: 10.3934/dcdsb.2010.14.307

[13]

Daniel Pardo, José Valero, Ángel Giménez. Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3569-3590. doi: 10.3934/dcdsb.2018279

[14]

Antonio Greco, Giovanni Porru. Optimization problems for the energy integral of p-Laplace equations. Conference Publications, 2013, 2013 (special) : 301-310. doi: 10.3934/proc.2013.2013.301

[15]

Ryuji Kajikiya. Nonradial least energy solutions of the p-Laplace elliptic equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 547-561. doi: 10.3934/dcds.2018024

[16]

John M. Ball. Global attractors for damped semilinear wave equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 31-52. doi: 10.3934/dcds.2004.10.31

[17]

Mei-Qin Zhan. Global attractors for phase-lock equations in superconductivity. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 243-256. doi: 10.3934/dcdsb.2002.2.243

[18]

Monica Conti, Elsa M. Marchini, V. Pata. Global attractors for nonlinear viscoelastic equations with memory. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1893-1913. doi: 10.3934/cpaa.2016021

[19]

V. V. Chepyzhov, A. Miranville. Trajectory and global attractors of dissipative hyperbolic equations with memory. Communications on Pure & Applied Analysis, 2005, 4 (1) : 115-142. doi: 10.3934/cpaa.2005.4.115

[20]

Arrigo Cellina. The regularity of solutions to some variational problems, including the p-Laplace equation for 3≤p < 4. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4071-4085. doi: 10.3934/dcds.2018177

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]