December  2016, 9(6): 2011-2029. doi: 10.3934/dcdss.2016082

Global existence of weak solutions to the three-dimensional Prandtl equations with a special structure

1. 

Department of Mathematics, City University of Hong Kong, Hong Kong, China

2. 

School of Mathematical Sciences, MOE-LSC and SHL-MAC, Shanghai Jiao Tong University, Shanghai 200240, China

3. 

Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong

Received  April 2015 Revised  September 2016 Published  November 2016

The global existence of weak solutions to the three space dimensional Prandtl equations is studied under some constraint on its structure. This is a continuation of our recent study on the local existence of classical solutions with the same structure condition. It reveals the sufficiency of the monotonicity condition on one component of the tangential velocity field and the favorable condition on pressure in the same direction that leads to global existence of weak solutions. This generalizes the result obtained by Xin-Zhang [14] on the two-dimensional Prandtl equations to the three-dimensional setting.
Citation: Cheng-Jie Liu, Ya-Guang Wang, Tong Yang. Global existence of weak solutions to the three-dimensional Prandtl equations with a special structure. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2011-2029. doi: 10.3934/dcdss.2016082
References:
[1]

R. Alexandre, Y.-G. Wang, C.-J. Xu and T. Yang, Well-posedness of the Prandtl equation in Sobolev spaces,, J. Amer. Math. Soc., 28 (2015), 745.  doi: 10.1090/S0894-0347-2014-00813-4.  Google Scholar

[2]

J. W. Barrett and E. Süli, Reflections on Dubinskiĭs nonlinear compact embedding theorem,, Publ. Inst. Math., 91 (2012), 95.  doi: 10.2298/PIM1205095B.  Google Scholar

[3]

R. E. Caflisch and M. Sammartino, Existence and singularities for the Prandtl boundary layer equations,, Z. Angew. Math. Mech., 80 (2000), 733.  doi: 10.1002/1521-4001(200011)80:11/12<733::AID-ZAMM733>3.0.CO;2-L.  Google Scholar

[4]

W. E, Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation,, Acta Math. Sin. (Engl. Ser.), 16 (2000), 207.  doi: 10.1007/s101140000034.  Google Scholar

[5]

C.-J. Liu, Y.-G. Wang and T. Yang, A well-posedness Theory for the Prandtl equations in three space variables,, , (2014).   Google Scholar

[6]

C.-J. Liu, Y.-G. Wang and T. Yang, On the ill-posedness of the Prandtl equations in three space dimensions,, Arch. Rational Mech. Anal., 220 (2016), 83.  doi: 10.1007/s00205-015-0927-1.  Google Scholar

[7]

N. Masmoudi and T. K. Wong, Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods,, Comm. Pure Appl. Math., 68 (2015), 1683.  doi: 10.1002/cpa.21595.  Google Scholar

[8]

F. K. Moore, Three-dimensional boundary layer theory,, Adv. Appl. Mech., 4 (1956), 159.  doi: 10.1016/S0065-2156(08)70373-9.  Google Scholar

[9]

O. A. Oleinik, On the properties of solutions of some elliptic boundary value problems,, Matem. Sb., 30 (1952), 695.   Google Scholar

[10]

O. A. Oleinik and V. N. Samokhin, Mathematical Models in Boundary Layer Theory,, Chapman and Hall/CRC, (1999).   Google Scholar

[11]

L. Prandtl, Über flüssigkeitsbewegungen bei sehr kleiner Reibung,, in Verh. Int. Math. Kongr., (1904), 484.   Google Scholar

[12]

M. Sammartino and R. E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, I. Existence for Euler and Prandtl equations,, Comm. Math. Phys., 192 (1998), 433.  doi: 10.1007/s002200050305.  Google Scholar

[13]

Z. P. Xin, Viscous boundary layers and their stability (I),, J. Partial Differential Equations, 11 (1998), 97.   Google Scholar

[14]

Z. P. Xin and L. Zhang, On the global existence of solutions to the Prandtl's system,, Adv. in Math., 181 (2004), 88.  doi: 10.1016/S0001-8708(03)00046-X.  Google Scholar

show all references

References:
[1]

R. Alexandre, Y.-G. Wang, C.-J. Xu and T. Yang, Well-posedness of the Prandtl equation in Sobolev spaces,, J. Amer. Math. Soc., 28 (2015), 745.  doi: 10.1090/S0894-0347-2014-00813-4.  Google Scholar

[2]

J. W. Barrett and E. Süli, Reflections on Dubinskiĭs nonlinear compact embedding theorem,, Publ. Inst. Math., 91 (2012), 95.  doi: 10.2298/PIM1205095B.  Google Scholar

[3]

R. E. Caflisch and M. Sammartino, Existence and singularities for the Prandtl boundary layer equations,, Z. Angew. Math. Mech., 80 (2000), 733.  doi: 10.1002/1521-4001(200011)80:11/12<733::AID-ZAMM733>3.0.CO;2-L.  Google Scholar

[4]

W. E, Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation,, Acta Math. Sin. (Engl. Ser.), 16 (2000), 207.  doi: 10.1007/s101140000034.  Google Scholar

[5]

C.-J. Liu, Y.-G. Wang and T. Yang, A well-posedness Theory for the Prandtl equations in three space variables,, , (2014).   Google Scholar

[6]

C.-J. Liu, Y.-G. Wang and T. Yang, On the ill-posedness of the Prandtl equations in three space dimensions,, Arch. Rational Mech. Anal., 220 (2016), 83.  doi: 10.1007/s00205-015-0927-1.  Google Scholar

[7]

N. Masmoudi and T. K. Wong, Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods,, Comm. Pure Appl. Math., 68 (2015), 1683.  doi: 10.1002/cpa.21595.  Google Scholar

[8]

F. K. Moore, Three-dimensional boundary layer theory,, Adv. Appl. Mech., 4 (1956), 159.  doi: 10.1016/S0065-2156(08)70373-9.  Google Scholar

[9]

O. A. Oleinik, On the properties of solutions of some elliptic boundary value problems,, Matem. Sb., 30 (1952), 695.   Google Scholar

[10]

O. A. Oleinik and V. N. Samokhin, Mathematical Models in Boundary Layer Theory,, Chapman and Hall/CRC, (1999).   Google Scholar

[11]

L. Prandtl, Über flüssigkeitsbewegungen bei sehr kleiner Reibung,, in Verh. Int. Math. Kongr., (1904), 484.   Google Scholar

[12]

M. Sammartino and R. E. Caflisch, Zero viscosity limit for analytic solutions of the Navier-Stokes equations on a half-space, I. Existence for Euler and Prandtl equations,, Comm. Math. Phys., 192 (1998), 433.  doi: 10.1007/s002200050305.  Google Scholar

[13]

Z. P. Xin, Viscous boundary layers and their stability (I),, J. Partial Differential Equations, 11 (1998), 97.   Google Scholar

[14]

Z. P. Xin and L. Zhang, On the global existence of solutions to the Prandtl's system,, Adv. in Math., 181 (2004), 88.  doi: 10.1016/S0001-8708(03)00046-X.  Google Scholar

[1]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[2]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[3]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[4]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[5]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[6]

Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351

[7]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[8]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230

[9]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[10]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

[11]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[12]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[13]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[14]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[15]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[16]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[17]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[18]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[19]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[20]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]