-
Previous Article
On the Cauchy problem of the modified Hunter-Saxton equation
- DCDS-S Home
- This Issue
-
Next Article
Global existence of weak solutions to the three-dimensional Prandtl equations with a special structure
Second-order slip flow of a generalized Oldroyd-B fluid through porous medium
1. | Gengdan Institute of Beijing University of Technology, Beijing 101301, China |
2. | School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China |
References:
[1] |
R. L. Bagley and P. T. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity,, J. Rheol., 27(3) (1983), 201. Google Scholar |
[2] |
R. L. Bagley and P. T. Torvik, On the fractional calculus model of viscoelastic behavior,, J. Rheol., 30 (1986), 133. Google Scholar |
[3] |
A. Beskok and G. E. Karniadakis, A model for flows in channels pipes, and ducts at micro and nano scales,, Microscale Therm. Eng., 3 (1999), 43. Google Scholar |
[4] |
C. Fetecau, T. Hayat, C. Fetecau and N. Alia, Unsteady flow of a second grade fluid between two side walls perpendicular to a plate,, Nonlinear Anal. RWA, 9 (2008), 1236.
doi: 10.1016/j.nonrwa.2007.02.014. |
[5] |
C. Fetecau, M. Nazar and C. Fetecau, Unsteady flow of an Oldroyd-B fluid generated by a constantly accelerating plate between two side walls perpendicular to the plate,, Int. J. Non-Linear Mech., 44 (2009), 1039.
doi: 10.1016/j.ijnonlinmec.2009.08.008. |
[6] |
C. Fetecau, C. Fetecau, M. Kamranc and D. Vieru, Exact solutions for the flow of a generalized Oldroyd-B fluid induced by a constantly accelerating plate between two side walls perpendicular to the plate,, J. Non-Newtonian Fluid Mech., 156 (2009), 189.
doi: 10.1016/j.jnnfm.2008.06.005. |
[7] |
Chr. Friedrich, Relaxation and retardation functions of the Maxwell model with fractional derivatives,, Rheol. Acta, 30 (1991), 151. Google Scholar |
[8] |
S. H. Han, L. C. Zheng and X. X. Zhang, Slip effects on a generalized Burgers' fluid flow between two side walls with fractional derivative,, J. Egypt. Math. Soc., 24 (2016), 130.
doi: 10.1016/j.joems.2014.10.004. |
[9] |
A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-Function: Theory and Applications,, Springer, (2010).
doi: 10.1007/978-1-4612-0873-0. |
[10] |
J. C. Maxwell, On stresses in rarefied gases arising from inequalities of temperature,, Proc. R. Soc. Lond., 27 (1879), 304.
doi: 10.1098/rspl.1878.0052. |
[11] |
M. Navier, Memoire sur les lois du movement des fluids,, Mem. L'Acad. Sci. L'Inst. France, 6 (1823), 389. Google Scholar |
[12] |
I. Podlubny, Fractional Differential Equations,, Academic Press, (1999).
doi: 10.1007/978-1-4612-0873-0. |
[13] |
H. T. Qi and M. Y. Xu, Stokes' first problem for a viscoelastic fluid with the generalized Oldroyd-B model,, Acta Mech. Sin., 23 (2007), 463.
doi: 10.1007/s10409-007-0093-2. |
[14] |
H. T. Qi and M. Y. Xu, Some unsteady unidirectional flows of a generalized Oldroyd-B fluid with fractional derivative,, Appl. Math. Model., 33 (2009), 4184.
doi: 10.1016/j.apm.2009.03.002. |
[15] |
I. N. Sneddon, Fourier Transforms,, McGraw-Hill Book Company, (1951).
doi: 10.1007/978-1-4612-0873-0. |
[16] |
D. Y. Song and T. Q. Jiang, Study on the constitutive equation with fractional derivative for the viscoelastic fluids Modified Jeffreys model and its application,, Rheol Acta, 27 (1998), 512. Google Scholar |
[17] |
W. C. Tan and T. Masuoka, Stokes' first problem for a second grade fluid in a porous half-space with heated boundary,, Int. J. Non-Linear Mech., 40 (2005), 515. Google Scholar |
[18] |
W. C. Tan and T. Masuoka, Stokes' first problem for an Oldroyd-B fluid in a porous half-space,, Phys. Fluid, 17 (2005).
doi: 10.1063/1.1850409. |
[19] |
W. C. Tan, Velocity over shoot of start-up flow for a Maxwell fluid in a porous half-space,, Chin. Phys., 15 (2006), 2644. Google Scholar |
[20] |
W. C. Tan and T. Masuoka, Exact solutions of the Rayleigh-Stokes problem for a heated generalized second grade fluid in a porous half-space,, Appl. Math. Model, 33 (2009), 524.
doi: 10.1016/j.apm.2007.11.015. |
[21] |
C. F. Xue and J. X. Nie, An exact solution of start-up flow for the fractional generalized Burgers' fluid in a porous half-space,, Rheol Acta, 30 (1991), 151.
|
[22] |
C. F. Xue, J. X. Nie and W. C. Tan, An exact solution of start-up flow for the fractional generalized Burgers' fluid in a porous half-space,, Nonlinear Anal. RWA, 9 (2008), 1628.
doi: 10.1016/j.nonrwa.2007.04.007. |
[23] |
T. T. Zhang, L. Jia and Z. C. Wang, Validation of Navier-Stokes equations for slip flow analysis within transition region,, Int. J. Heat Mass Transfer, 51 (2008), 6323.
doi: 10.1016/j.ijheatmasstransfer.2008.04.049. |
[24] |
T. T. Zhang, L. Jia, Z. C. Wang and X. Li, The application of homotopy analysis method for 2-dimensional steady slip flow in microchannels,, Phys. Lett. A , 372 (2008), 3223.
doi: 10.1016/j.physleta.2008.01.077. |
[25] |
L. C. Zheng, X. X. Zhang and C. Q. Lu, Heat transfer of power law non-Newtonian,, Chin. Phys. Lett., 23 (2006), 3301. Google Scholar |
[26] |
L. C. Zheng, Y. Q. Liu and X. X. Zhang, Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative,, Nonlinear Anal. RWA, 13 (2012), 513.
doi: 10.1016/j.nonrwa.2011.02.016. |
[27] |
J. Zhu, L. C. Zheng and Z. G. Zhang, The effect of the slip condition on the MHD stagnation-point over a power-law stretching sheet,, Appl. Math. Mech., 31 (2010), 439.
doi: 10.1007/s10483-010-0404-z. |
show all references
References:
[1] |
R. L. Bagley and P. T. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity,, J. Rheol., 27(3) (1983), 201. Google Scholar |
[2] |
R. L. Bagley and P. T. Torvik, On the fractional calculus model of viscoelastic behavior,, J. Rheol., 30 (1986), 133. Google Scholar |
[3] |
A. Beskok and G. E. Karniadakis, A model for flows in channels pipes, and ducts at micro and nano scales,, Microscale Therm. Eng., 3 (1999), 43. Google Scholar |
[4] |
C. Fetecau, T. Hayat, C. Fetecau and N. Alia, Unsteady flow of a second grade fluid between two side walls perpendicular to a plate,, Nonlinear Anal. RWA, 9 (2008), 1236.
doi: 10.1016/j.nonrwa.2007.02.014. |
[5] |
C. Fetecau, M. Nazar and C. Fetecau, Unsteady flow of an Oldroyd-B fluid generated by a constantly accelerating plate between two side walls perpendicular to the plate,, Int. J. Non-Linear Mech., 44 (2009), 1039.
doi: 10.1016/j.ijnonlinmec.2009.08.008. |
[6] |
C. Fetecau, C. Fetecau, M. Kamranc and D. Vieru, Exact solutions for the flow of a generalized Oldroyd-B fluid induced by a constantly accelerating plate between two side walls perpendicular to the plate,, J. Non-Newtonian Fluid Mech., 156 (2009), 189.
doi: 10.1016/j.jnnfm.2008.06.005. |
[7] |
Chr. Friedrich, Relaxation and retardation functions of the Maxwell model with fractional derivatives,, Rheol. Acta, 30 (1991), 151. Google Scholar |
[8] |
S. H. Han, L. C. Zheng and X. X. Zhang, Slip effects on a generalized Burgers' fluid flow between two side walls with fractional derivative,, J. Egypt. Math. Soc., 24 (2016), 130.
doi: 10.1016/j.joems.2014.10.004. |
[9] |
A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-Function: Theory and Applications,, Springer, (2010).
doi: 10.1007/978-1-4612-0873-0. |
[10] |
J. C. Maxwell, On stresses in rarefied gases arising from inequalities of temperature,, Proc. R. Soc. Lond., 27 (1879), 304.
doi: 10.1098/rspl.1878.0052. |
[11] |
M. Navier, Memoire sur les lois du movement des fluids,, Mem. L'Acad. Sci. L'Inst. France, 6 (1823), 389. Google Scholar |
[12] |
I. Podlubny, Fractional Differential Equations,, Academic Press, (1999).
doi: 10.1007/978-1-4612-0873-0. |
[13] |
H. T. Qi and M. Y. Xu, Stokes' first problem for a viscoelastic fluid with the generalized Oldroyd-B model,, Acta Mech. Sin., 23 (2007), 463.
doi: 10.1007/s10409-007-0093-2. |
[14] |
H. T. Qi and M. Y. Xu, Some unsteady unidirectional flows of a generalized Oldroyd-B fluid with fractional derivative,, Appl. Math. Model., 33 (2009), 4184.
doi: 10.1016/j.apm.2009.03.002. |
[15] |
I. N. Sneddon, Fourier Transforms,, McGraw-Hill Book Company, (1951).
doi: 10.1007/978-1-4612-0873-0. |
[16] |
D. Y. Song and T. Q. Jiang, Study on the constitutive equation with fractional derivative for the viscoelastic fluids Modified Jeffreys model and its application,, Rheol Acta, 27 (1998), 512. Google Scholar |
[17] |
W. C. Tan and T. Masuoka, Stokes' first problem for a second grade fluid in a porous half-space with heated boundary,, Int. J. Non-Linear Mech., 40 (2005), 515. Google Scholar |
[18] |
W. C. Tan and T. Masuoka, Stokes' first problem for an Oldroyd-B fluid in a porous half-space,, Phys. Fluid, 17 (2005).
doi: 10.1063/1.1850409. |
[19] |
W. C. Tan, Velocity over shoot of start-up flow for a Maxwell fluid in a porous half-space,, Chin. Phys., 15 (2006), 2644. Google Scholar |
[20] |
W. C. Tan and T. Masuoka, Exact solutions of the Rayleigh-Stokes problem for a heated generalized second grade fluid in a porous half-space,, Appl. Math. Model, 33 (2009), 524.
doi: 10.1016/j.apm.2007.11.015. |
[21] |
C. F. Xue and J. X. Nie, An exact solution of start-up flow for the fractional generalized Burgers' fluid in a porous half-space,, Rheol Acta, 30 (1991), 151.
|
[22] |
C. F. Xue, J. X. Nie and W. C. Tan, An exact solution of start-up flow for the fractional generalized Burgers' fluid in a porous half-space,, Nonlinear Anal. RWA, 9 (2008), 1628.
doi: 10.1016/j.nonrwa.2007.04.007. |
[23] |
T. T. Zhang, L. Jia and Z. C. Wang, Validation of Navier-Stokes equations for slip flow analysis within transition region,, Int. J. Heat Mass Transfer, 51 (2008), 6323.
doi: 10.1016/j.ijheatmasstransfer.2008.04.049. |
[24] |
T. T. Zhang, L. Jia, Z. C. Wang and X. Li, The application of homotopy analysis method for 2-dimensional steady slip flow in microchannels,, Phys. Lett. A , 372 (2008), 3223.
doi: 10.1016/j.physleta.2008.01.077. |
[25] |
L. C. Zheng, X. X. Zhang and C. Q. Lu, Heat transfer of power law non-Newtonian,, Chin. Phys. Lett., 23 (2006), 3301. Google Scholar |
[26] |
L. C. Zheng, Y. Q. Liu and X. X. Zhang, Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative,, Nonlinear Anal. RWA, 13 (2012), 513.
doi: 10.1016/j.nonrwa.2011.02.016. |
[27] |
J. Zhu, L. C. Zheng and Z. G. Zhang, The effect of the slip condition on the MHD stagnation-point over a power-law stretching sheet,, Appl. Math. Mech., 31 (2010), 439.
doi: 10.1007/s10483-010-0404-z. |
[1] |
Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020164 |
[2] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[3] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[4] |
Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281 |
[5] |
Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020388 |
[6] |
Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020377 |
[7] |
Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020340 |
[8] |
Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020103 |
[9] |
Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051 |
[10] |
Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302 |
[11] |
Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020055 |
[12] |
Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279 |
[13] |
Aurelia Dymek. Proximality of multidimensional $ \mathscr{B} $-free systems. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021013 |
[14] |
Peter E. Kloeden, Yuan Lou. Preface for the special issue "20 years of DCDS-B". Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : i-ii. doi: 10.3934/dcdsb.2020372 |
[15] |
Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265 |
[16] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[17] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[18] |
Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158 |
[19] |
Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021021 |
[20] |
Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]