December  2016, 9(6): 2031-2046. doi: 10.3934/dcdss.2016083

Second-order slip flow of a generalized Oldroyd-B fluid through porous medium

1. 

Gengdan Institute of Beijing University of Technology, Beijing 101301, China

2. 

School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China

Received  August 2015 Revised  September 2016 Published  November 2016

This work is concerned the flow of a generalized Oldroyd-B fluid in a porous half-space with second-order slip effect. The fractional calculus approach is used to establish the constitutive relationship of the non-Newtonian fluid model. A new motion model is firstly proposed by modifying the boundary condition with second-order slip effect. Exact solutions for velocity and shear stress are obtained in terms of Fox H-function by using the discrete inverse Laplace transform of the sequential fractional derivatives. The similar solutions for the generalized Oldroyd-B fluid with first-order slip or no slip, and the solutions for a generalized Oldroyd-B fluid in nonporous medium, are obtained as the limiting cases of our solutions. Furthermore, the behavior of various parameters on the corresponding flow characteristics is shown graphical through different diagrams.
Citation: Yaqing Liu, Liancun Zheng. Second-order slip flow of a generalized Oldroyd-B fluid through porous medium. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2031-2046. doi: 10.3934/dcdss.2016083
References:
[1]

R. L. Bagley and P. T. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity,, J. Rheol., 27(3) (1983), 201.   Google Scholar

[2]

R. L. Bagley and P. T. Torvik, On the fractional calculus model of viscoelastic behavior,, J. Rheol., 30 (1986), 133.   Google Scholar

[3]

A. Beskok and G. E. Karniadakis, A model for flows in channels pipes, and ducts at micro and nano scales,, Microscale Therm. Eng., 3 (1999), 43.   Google Scholar

[4]

C. Fetecau, T. Hayat, C. Fetecau and N. Alia, Unsteady flow of a second grade fluid between two side walls perpendicular to a plate,, Nonlinear Anal. RWA, 9 (2008), 1236.  doi: 10.1016/j.nonrwa.2007.02.014.  Google Scholar

[5]

C. Fetecau, M. Nazar and C. Fetecau, Unsteady flow of an Oldroyd-B fluid generated by a constantly accelerating plate between two side walls perpendicular to the plate,, Int. J. Non-Linear Mech., 44 (2009), 1039.  doi: 10.1016/j.ijnonlinmec.2009.08.008.  Google Scholar

[6]

C. Fetecau, C. Fetecau, M. Kamranc and D. Vieru, Exact solutions for the flow of a generalized Oldroyd-B fluid induced by a constantly accelerating plate between two side walls perpendicular to the plate,, J. Non-Newtonian Fluid Mech., 156 (2009), 189.  doi: 10.1016/j.jnnfm.2008.06.005.  Google Scholar

[7]

Chr. Friedrich, Relaxation and retardation functions of the Maxwell model with fractional derivatives,, Rheol. Acta, 30 (1991), 151.   Google Scholar

[8]

S. H. Han, L. C. Zheng and X. X. Zhang, Slip effects on a generalized Burgers' fluid flow between two side walls with fractional derivative,, J. Egypt. Math. Soc., 24 (2016), 130.  doi: 10.1016/j.joems.2014.10.004.  Google Scholar

[9]

A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-Function: Theory and Applications,, Springer, (2010).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[10]

J. C. Maxwell, On stresses in rarefied gases arising from inequalities of temperature,, Proc. R. Soc. Lond., 27 (1879), 304.  doi: 10.1098/rspl.1878.0052.  Google Scholar

[11]

M. Navier, Memoire sur les lois du movement des fluids,, Mem. L'Acad. Sci. L'Inst. France, 6 (1823), 389.   Google Scholar

[12]

I. Podlubny, Fractional Differential Equations,, Academic Press, (1999).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[13]

H. T. Qi and M. Y. Xu, Stokes' first problem for a viscoelastic fluid with the generalized Oldroyd-B model,, Acta Mech. Sin., 23 (2007), 463.  doi: 10.1007/s10409-007-0093-2.  Google Scholar

[14]

H. T. Qi and M. Y. Xu, Some unsteady unidirectional flows of a generalized Oldroyd-B fluid with fractional derivative,, Appl. Math. Model., 33 (2009), 4184.  doi: 10.1016/j.apm.2009.03.002.  Google Scholar

[15]

I. N. Sneddon, Fourier Transforms,, McGraw-Hill Book Company, (1951).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[16]

D. Y. Song and T. Q. Jiang, Study on the constitutive equation with fractional derivative for the viscoelastic fluids Modified Jeffreys model and its application,, Rheol Acta, 27 (1998), 512.   Google Scholar

[17]

W. C. Tan and T. Masuoka, Stokes' first problem for a second grade fluid in a porous half-space with heated boundary,, Int. J. Non-Linear Mech., 40 (2005), 515.   Google Scholar

[18]

W. C. Tan and T. Masuoka, Stokes' first problem for an Oldroyd-B fluid in a porous half-space,, Phys. Fluid, 17 (2005).  doi: 10.1063/1.1850409.  Google Scholar

[19]

W. C. Tan, Velocity over shoot of start-up flow for a Maxwell fluid in a porous half-space,, Chin. Phys., 15 (2006), 2644.   Google Scholar

[20]

W. C. Tan and T. Masuoka, Exact solutions of the Rayleigh-Stokes problem for a heated generalized second grade fluid in a porous half-space,, Appl. Math. Model, 33 (2009), 524.  doi: 10.1016/j.apm.2007.11.015.  Google Scholar

[21]

C. F. Xue and J. X. Nie, An exact solution of start-up flow for the fractional generalized Burgers' fluid in a porous half-space,, Rheol Acta, 30 (1991), 151.   Google Scholar

[22]

C. F. Xue, J. X. Nie and W. C. Tan, An exact solution of start-up flow for the fractional generalized Burgers' fluid in a porous half-space,, Nonlinear Anal. RWA, 9 (2008), 1628.  doi: 10.1016/j.nonrwa.2007.04.007.  Google Scholar

[23]

T. T. Zhang, L. Jia and Z. C. Wang, Validation of Navier-Stokes equations for slip flow analysis within transition region,, Int. J. Heat Mass Transfer, 51 (2008), 6323.  doi: 10.1016/j.ijheatmasstransfer.2008.04.049.  Google Scholar

[24]

T. T. Zhang, L. Jia, Z. C. Wang and X. Li, The application of homotopy analysis method for 2-dimensional steady slip flow in microchannels,, Phys. Lett. A , 372 (2008), 3223.  doi: 10.1016/j.physleta.2008.01.077.  Google Scholar

[25]

L. C. Zheng, X. X. Zhang and C. Q. Lu, Heat transfer of power law non-Newtonian,, Chin. Phys. Lett., 23 (2006), 3301.   Google Scholar

[26]

L. C. Zheng, Y. Q. Liu and X. X. Zhang, Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative,, Nonlinear Anal. RWA, 13 (2012), 513.  doi: 10.1016/j.nonrwa.2011.02.016.  Google Scholar

[27]

J. Zhu, L. C. Zheng and Z. G. Zhang, The effect of the slip condition on the MHD stagnation-point over a power-law stretching sheet,, Appl. Math. Mech., 31 (2010), 439.  doi: 10.1007/s10483-010-0404-z.  Google Scholar

show all references

References:
[1]

R. L. Bagley and P. T. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity,, J. Rheol., 27(3) (1983), 201.   Google Scholar

[2]

R. L. Bagley and P. T. Torvik, On the fractional calculus model of viscoelastic behavior,, J. Rheol., 30 (1986), 133.   Google Scholar

[3]

A. Beskok and G. E. Karniadakis, A model for flows in channels pipes, and ducts at micro and nano scales,, Microscale Therm. Eng., 3 (1999), 43.   Google Scholar

[4]

C. Fetecau, T. Hayat, C. Fetecau and N. Alia, Unsteady flow of a second grade fluid between two side walls perpendicular to a plate,, Nonlinear Anal. RWA, 9 (2008), 1236.  doi: 10.1016/j.nonrwa.2007.02.014.  Google Scholar

[5]

C. Fetecau, M. Nazar and C. Fetecau, Unsteady flow of an Oldroyd-B fluid generated by a constantly accelerating plate between two side walls perpendicular to the plate,, Int. J. Non-Linear Mech., 44 (2009), 1039.  doi: 10.1016/j.ijnonlinmec.2009.08.008.  Google Scholar

[6]

C. Fetecau, C. Fetecau, M. Kamranc and D. Vieru, Exact solutions for the flow of a generalized Oldroyd-B fluid induced by a constantly accelerating plate between two side walls perpendicular to the plate,, J. Non-Newtonian Fluid Mech., 156 (2009), 189.  doi: 10.1016/j.jnnfm.2008.06.005.  Google Scholar

[7]

Chr. Friedrich, Relaxation and retardation functions of the Maxwell model with fractional derivatives,, Rheol. Acta, 30 (1991), 151.   Google Scholar

[8]

S. H. Han, L. C. Zheng and X. X. Zhang, Slip effects on a generalized Burgers' fluid flow between two side walls with fractional derivative,, J. Egypt. Math. Soc., 24 (2016), 130.  doi: 10.1016/j.joems.2014.10.004.  Google Scholar

[9]

A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-Function: Theory and Applications,, Springer, (2010).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[10]

J. C. Maxwell, On stresses in rarefied gases arising from inequalities of temperature,, Proc. R. Soc. Lond., 27 (1879), 304.  doi: 10.1098/rspl.1878.0052.  Google Scholar

[11]

M. Navier, Memoire sur les lois du movement des fluids,, Mem. L'Acad. Sci. L'Inst. France, 6 (1823), 389.   Google Scholar

[12]

I. Podlubny, Fractional Differential Equations,, Academic Press, (1999).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[13]

H. T. Qi and M. Y. Xu, Stokes' first problem for a viscoelastic fluid with the generalized Oldroyd-B model,, Acta Mech. Sin., 23 (2007), 463.  doi: 10.1007/s10409-007-0093-2.  Google Scholar

[14]

H. T. Qi and M. Y. Xu, Some unsteady unidirectional flows of a generalized Oldroyd-B fluid with fractional derivative,, Appl. Math. Model., 33 (2009), 4184.  doi: 10.1016/j.apm.2009.03.002.  Google Scholar

[15]

I. N. Sneddon, Fourier Transforms,, McGraw-Hill Book Company, (1951).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[16]

D. Y. Song and T. Q. Jiang, Study on the constitutive equation with fractional derivative for the viscoelastic fluids Modified Jeffreys model and its application,, Rheol Acta, 27 (1998), 512.   Google Scholar

[17]

W. C. Tan and T. Masuoka, Stokes' first problem for a second grade fluid in a porous half-space with heated boundary,, Int. J. Non-Linear Mech., 40 (2005), 515.   Google Scholar

[18]

W. C. Tan and T. Masuoka, Stokes' first problem for an Oldroyd-B fluid in a porous half-space,, Phys. Fluid, 17 (2005).  doi: 10.1063/1.1850409.  Google Scholar

[19]

W. C. Tan, Velocity over shoot of start-up flow for a Maxwell fluid in a porous half-space,, Chin. Phys., 15 (2006), 2644.   Google Scholar

[20]

W. C. Tan and T. Masuoka, Exact solutions of the Rayleigh-Stokes problem for a heated generalized second grade fluid in a porous half-space,, Appl. Math. Model, 33 (2009), 524.  doi: 10.1016/j.apm.2007.11.015.  Google Scholar

[21]

C. F. Xue and J. X. Nie, An exact solution of start-up flow for the fractional generalized Burgers' fluid in a porous half-space,, Rheol Acta, 30 (1991), 151.   Google Scholar

[22]

C. F. Xue, J. X. Nie and W. C. Tan, An exact solution of start-up flow for the fractional generalized Burgers' fluid in a porous half-space,, Nonlinear Anal. RWA, 9 (2008), 1628.  doi: 10.1016/j.nonrwa.2007.04.007.  Google Scholar

[23]

T. T. Zhang, L. Jia and Z. C. Wang, Validation of Navier-Stokes equations for slip flow analysis within transition region,, Int. J. Heat Mass Transfer, 51 (2008), 6323.  doi: 10.1016/j.ijheatmasstransfer.2008.04.049.  Google Scholar

[24]

T. T. Zhang, L. Jia, Z. C. Wang and X. Li, The application of homotopy analysis method for 2-dimensional steady slip flow in microchannels,, Phys. Lett. A , 372 (2008), 3223.  doi: 10.1016/j.physleta.2008.01.077.  Google Scholar

[25]

L. C. Zheng, X. X. Zhang and C. Q. Lu, Heat transfer of power law non-Newtonian,, Chin. Phys. Lett., 23 (2006), 3301.   Google Scholar

[26]

L. C. Zheng, Y. Q. Liu and X. X. Zhang, Slip effects on MHD flow of a generalized Oldroyd-B fluid with fractional derivative,, Nonlinear Anal. RWA, 13 (2012), 513.  doi: 10.1016/j.nonrwa.2011.02.016.  Google Scholar

[27]

J. Zhu, L. C. Zheng and Z. G. Zhang, The effect of the slip condition on the MHD stagnation-point over a power-law stretching sheet,, Appl. Math. Mech., 31 (2010), 439.  doi: 10.1007/s10483-010-0404-z.  Google Scholar

[1]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[2]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[3]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[4]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281

[5]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[6]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[7]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[8]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[9]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[10]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[11]

Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020055

[12]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279

[13]

Aurelia Dymek. Proximality of multidimensional $ \mathscr{B} $-free systems. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021013

[14]

Peter E. Kloeden, Yuan Lou. Preface for the special issue "20 years of DCDS-B". Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : i-ii. doi: 10.3934/dcdsb.2020372

[15]

Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265

[16]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[17]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[18]

Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158

[19]

Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021021

[20]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (77)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]