December  2016, 9(6): 2113-2127. doi: 10.3934/dcdss.2016087

The regularization of solution for the coupled Navier-Stokes and Maxwell equations

1. 

School of Mathematics, Center for Nonlinear Studies, Northwest University, Xi'an 71006901, China

2. 

Department of Mathematics, Yunnan Nationalities University, Kunming 650031, China

Received  July 2015 Revised  September 2016 Published  November 2016

The purpose of this paper is to build the existence of time-spatial global regular solution to the coupled Navier-Stokes and Maxwell equations.
Citation: Wenjing Song, Ganshan Yang. The regularization of solution for the coupled Navier-Stokes and Maxwell equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2113-2127. doi: 10.3934/dcdss.2016087
References:
[1]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Philosophical Transactions of the Royal Society of London. Series A, 272 (1972), 47.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[2]

M. D. Gunzburger, O. A. Ladyzhenskaya and J. S. Peterson, On the global unique solvability of initial-boundary value problems for the coupled modified Navier-Stokes and Maxwell equation,, Journal of Mathematical Fluid Mechanics, 6 (2004), 462.  doi: 10.1007/s00021-004-0107-9.  Google Scholar

[3]

A. Kiselev and O. Ladyzhenskaya, On existence and unieness of solutions of nonstationary problem for viscous incompressible fluid,, Izv. Akad. Nauk SSSR, 21 (1957), 655.   Google Scholar

[4]

A. Kulikovskiy and G. Lyubimov, Magnetohydrodynamics,, Addison-Wesley, (1965).   Google Scholar

[5]

O. Ladyzhenskaya and V. Solonnikov, Solution of some nonstationary magnetohydrodynamical problems for incompressible fluid,, Trudy of steklov Math. Inst., 69 (1960), 115.   Google Scholar

[6]

O. Ladyzhenskaya, Modfications of the Navier-Stokes equations forlarge velocity gradients,, Zap. Nauchn. Semin. LOMI, 7 (1968), 126.   Google Scholar

[7]

O. Lehto, Proceedings of the International Congress of Mathematicians Hesinkin,, Academia Scientiarum Fennica, (1980).   Google Scholar

[8]

O. Ladyzhenskaya, Boundary-valeu Problem of Mathematical Physics,, Nauka, (1973).   Google Scholar

[9]

R. Moreau, Magnetohydrodynamics,, Kluwer, (1990).  doi: 10.1007/978-94-015-7883-7.  Google Scholar

show all references

References:
[1]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Philosophical Transactions of the Royal Society of London. Series A, 272 (1972), 47.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[2]

M. D. Gunzburger, O. A. Ladyzhenskaya and J. S. Peterson, On the global unique solvability of initial-boundary value problems for the coupled modified Navier-Stokes and Maxwell equation,, Journal of Mathematical Fluid Mechanics, 6 (2004), 462.  doi: 10.1007/s00021-004-0107-9.  Google Scholar

[3]

A. Kiselev and O. Ladyzhenskaya, On existence and unieness of solutions of nonstationary problem for viscous incompressible fluid,, Izv. Akad. Nauk SSSR, 21 (1957), 655.   Google Scholar

[4]

A. Kulikovskiy and G. Lyubimov, Magnetohydrodynamics,, Addison-Wesley, (1965).   Google Scholar

[5]

O. Ladyzhenskaya and V. Solonnikov, Solution of some nonstationary magnetohydrodynamical problems for incompressible fluid,, Trudy of steklov Math. Inst., 69 (1960), 115.   Google Scholar

[6]

O. Ladyzhenskaya, Modfications of the Navier-Stokes equations forlarge velocity gradients,, Zap. Nauchn. Semin. LOMI, 7 (1968), 126.   Google Scholar

[7]

O. Lehto, Proceedings of the International Congress of Mathematicians Hesinkin,, Academia Scientiarum Fennica, (1980).   Google Scholar

[8]

O. Ladyzhenskaya, Boundary-valeu Problem of Mathematical Physics,, Nauka, (1973).   Google Scholar

[9]

R. Moreau, Magnetohydrodynamics,, Kluwer, (1990).  doi: 10.1007/978-94-015-7883-7.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[3]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[4]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[5]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[6]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[7]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[8]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[9]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[10]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[11]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[12]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[13]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[14]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[15]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[16]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[17]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[18]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[19]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[20]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]