December  2016, 9(6): 2129-2148. doi: 10.3934/dcdss.2016088

Global exact controllability and asympotic stabilization of the periodic two-component $\mu\rho$-Hunter-Saxton system

1. 

School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China

2. 

Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu 212013

3. 

Nonlinear Scienti c Research Center, Jiangsu University, Zhenjiang, Jiangsu 212013, China

Received  July 2015 Revised  September 2016 Published  November 2016

In this paper, we discuss two main problems. In the first section, we establish a new global distributed exact controllability of the periodic two-component $\mu\rho$-Hunter-Saxton system on the circle by means of a distributed control. And in the second section, we present corresponding result of the asymptotic stabilization problem about the periodic two-component $\mu\rho$-Hunter-Saxton system. By presenting concrete form of the feedback law, an equivalent system is got.
Citation: Jingqun Wang, Lixin Tian, Weiwei Guo. Global exact controllability and asympotic stabilization of the periodic two-component $\mu\rho$-Hunter-Saxton system. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2129-2148. doi: 10.3934/dcdss.2016088
References:
[1]

W. Arendt and S. Bu, Operator-valued fourier multipliers on periodic Besov spaces and applications,, Proc. Edinb. Math. Soc., 47 (2004), 15.  doi: 10.1017/S0013091502000378.  Google Scholar

[2]

S. P. Banks, Exact boundary controllability and optimal control for a generalised Korteweg de Vries equation,, Proceedings of the Third World Congress of Nonlinear Analysts, 47 (2001), 5537.  doi: 10.1016/S0362-546X(01)00657-5.  Google Scholar

[3]

R. Beals, D. H. Sattinger and J. Szmigielski, Inverse scattering solutions of the Hunter-Saxton equation,, Appl. Anal., 78 (2001), 255.  doi: 10.1080/00036810108840938.  Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[5]

G. M. Coclite, H. Holden and K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation,, SIAM J. Math. Anal., 37 (2005), 1044.  doi: 10.1137/040616711.  Google Scholar

[6]

A. Constantin, On the Cauchy problem for the periodic Camassa-Holm equation,, J. Diff. Equa., 141 (1997), 218.  doi: 10.1006/jdeq.1997.3333.  Google Scholar

[7]

A. Constantin, On the inverse spectral problem for the Camassa-Holm equation,, J. Funct. Anal., 155 (1998), 352.  doi: 10.1006/jfan.1997.3231.  Google Scholar

[8]

A. Constantin, Global solutions of the Hunter-Saxton equation,, SIAM J. Math. Anal., 37 (2005), 996.  doi: 10.1137/050623036.  Google Scholar

[9]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 303.   Google Scholar

[10]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[11]

J.-M. Coron, Global Asymptotic Stabilization for controllable systems without drift,, Math. Control Signal Systems, 5 (1992), 295.  doi: 10.1007/BF01211563.  Google Scholar

[12]

E. Crépeau, Exact boundary controllability of the Korteweg-de Vries equation around a non-trivial stationary solution,, Internat. J. Control, 74 (2001), 1096.  doi: 10.1080/00207170110052202.  Google Scholar

[13]

R. Danchin, A note on well-posedness for Camassa-Holm equation,, J. Diff. Equa., 192 (2003), 429.  doi: 10.1016/S0022-0396(03)00096-2.  Google Scholar

[14]

C. de Lellis, T. Kappeler and P. Topalov, Low-regularity solutions of the periodic Camassa-Holm equation,, Comm. Part. Diff. Equa., 32 (2007), 87.  doi: 10.1080/03605300601091470.  Google Scholar

[15]

J. Escher, M. Kohlmanna and J. Lenells, The geometry of the two-component Camassa-Holm and Degasperis-Procesi equations,, Journal of Geometry and Physics, 61 (2011), 436.  doi: 10.1016/j.geomphys.2010.10.011.  Google Scholar

[16]

J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 19 (2007), 493.  doi: 10.3934/dcds.2007.19.493.  Google Scholar

[17]

Y. Fu, Y. Liu and C. Qu, On the blow up structure for the generalized periodic Camassa-Holm and Degasperis-Procesi equations,, J. Funct. Anal., 262 (2012), 3125.  doi: 10.1016/j.jfa.2012.01.009.  Google Scholar

[18]

W. Fu and D. J. Zhang, The Hamiltonian structures of $\mu$-equations related to periodic peakons,, Chin. Phys. Lett., 30 (2013).   Google Scholar

[19]

O. Glass, Controllability and asymptotic stabilization of the Camassa-Holm equation,, J. Diff. Equa., 245 (2008), 1584.  doi: 10.1016/j.jde.2008.06.016.  Google Scholar

[20]

A. Himonas and G. Misiolek, Wellposedness of the Cauchy problem for a shal low water equation on the circle,, J. Diff. Equa., 161 (2000), 479.  doi: 10.1006/jdeq.1999.3695.  Google Scholar

[21]

J. K. Hunter and R. Saxton, Dynamics of director fields,, SIAM J. Appl. Math., 51 (1991), 1498.  doi: 10.1137/0151075.  Google Scholar

[22]

J. K. Hunter and Y. Zheng, On a completely integrable nonlinear hyperbolic variational equation,, Physica D., 79 (1994), 361.  doi: 10.1016/S0167-2789(05)80015-6.  Google Scholar

[23]

B. Khesin, J. Lenells and G. Misiolk, Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms,, Math. Ann., 342 (2008), 617.  doi: 10.1007/s00208-008-0250-3.  Google Scholar

[24]

J. Lenells, Traveling wave solutions of the Camassa-Holm equation,, J. Diff. Equa., 217 (2005), 393.  doi: 10.1016/j.jde.2004.09.007.  Google Scholar

[25]

Y. A. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation,, J. Diff. Equa., 162 (2000), 27.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[26]

F. Linares and J. Ortega, On the controllability and stabilization of the linearized Benjamin-Ono equation,, ESAIM Control Optim. Calc. Var., 11 (2005), 204.  doi: 10.1051/cocv:2005002.  Google Scholar

[27]

S. Micu, On the controllability of the linearized Benjamin-Bona-Mahony equation,, SIAM J. Control Optim., 39 (2001), 1677.  doi: 10.1137/S0363012999362499.  Google Scholar

[28]

B. Moon and Y. Liu, Wave breaking and global existence for the generalized periodic two-component Hunter-Saxton system,, J. Diff. Equa., 253 (2012), 319.  doi: 10.1016/j.jde.2012.02.011.  Google Scholar

[29]

R. E. Showater, Hilbert Space Methods for Partial Differential Equations,, Pitman, (1977).   Google Scholar

[30]

M. Wunsch, The generalized Hunter-Saxton system,, SIAM J. Math. Anal., 42 (2010), 1286.  doi: 10.1137/090768576.  Google Scholar

[31]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[32]

K. Yan and Z. Yin, On the Cauchy problem for a two-component Degasperis-Procesi system,, J. Diff. Equa., 252 (2012), 2131.  doi: 10.1016/j.jde.2011.08.003.  Google Scholar

[33]

Z. Yin, On the structure of solutions to the periodic Hunter-Saxton equation,, SIAM J. Math. Anal., 36 (2004), 272.  doi: 10.1137/S0036141003425672.  Google Scholar

[34]

Z. Y. Yin and C. Guan, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system,, J. Diff. Equa., 248 (2010), 2003.  doi: 10.1016/j.jde.2009.08.002.  Google Scholar

[35]

S. Yu, The spatially periodic Cauchy problem for a generalized 2-component $\mu$-Camassa-Holm system,, Nonlinear Anal. Real World Appl., 19 (2014), 117.  doi: 10.1016/j.nonrwa.2014.03.006.  Google Scholar

[36]

Y. Zhang, Y. Liu and C. Z. Qu, Blow up of solutions and traveling waves to the two-component $\mu$-Camassa-Holm system,, Int. Math. Res. Not., 15 (2013), 3386.   Google Scholar

show all references

References:
[1]

W. Arendt and S. Bu, Operator-valued fourier multipliers on periodic Besov spaces and applications,, Proc. Edinb. Math. Soc., 47 (2004), 15.  doi: 10.1017/S0013091502000378.  Google Scholar

[2]

S. P. Banks, Exact boundary controllability and optimal control for a generalised Korteweg de Vries equation,, Proceedings of the Third World Congress of Nonlinear Analysts, 47 (2001), 5537.  doi: 10.1016/S0362-546X(01)00657-5.  Google Scholar

[3]

R. Beals, D. H. Sattinger and J. Szmigielski, Inverse scattering solutions of the Hunter-Saxton equation,, Appl. Anal., 78 (2001), 255.  doi: 10.1080/00036810108840938.  Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[5]

G. M. Coclite, H. Holden and K. H. Karlsen, Global weak solutions to a generalized hyperelastic-rod wave equation,, SIAM J. Math. Anal., 37 (2005), 1044.  doi: 10.1137/040616711.  Google Scholar

[6]

A. Constantin, On the Cauchy problem for the periodic Camassa-Holm equation,, J. Diff. Equa., 141 (1997), 218.  doi: 10.1006/jdeq.1997.3333.  Google Scholar

[7]

A. Constantin, On the inverse spectral problem for the Camassa-Holm equation,, J. Funct. Anal., 155 (1998), 352.  doi: 10.1006/jfan.1997.3231.  Google Scholar

[8]

A. Constantin, Global solutions of the Hunter-Saxton equation,, SIAM J. Math. Anal., 37 (2005), 996.  doi: 10.1137/050623036.  Google Scholar

[9]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 26 (1998), 303.   Google Scholar

[10]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[11]

J.-M. Coron, Global Asymptotic Stabilization for controllable systems without drift,, Math. Control Signal Systems, 5 (1992), 295.  doi: 10.1007/BF01211563.  Google Scholar

[12]

E. Crépeau, Exact boundary controllability of the Korteweg-de Vries equation around a non-trivial stationary solution,, Internat. J. Control, 74 (2001), 1096.  doi: 10.1080/00207170110052202.  Google Scholar

[13]

R. Danchin, A note on well-posedness for Camassa-Holm equation,, J. Diff. Equa., 192 (2003), 429.  doi: 10.1016/S0022-0396(03)00096-2.  Google Scholar

[14]

C. de Lellis, T. Kappeler and P. Topalov, Low-regularity solutions of the periodic Camassa-Holm equation,, Comm. Part. Diff. Equa., 32 (2007), 87.  doi: 10.1080/03605300601091470.  Google Scholar

[15]

J. Escher, M. Kohlmanna and J. Lenells, The geometry of the two-component Camassa-Holm and Degasperis-Procesi equations,, Journal of Geometry and Physics, 61 (2011), 436.  doi: 10.1016/j.geomphys.2010.10.011.  Google Scholar

[16]

J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 19 (2007), 493.  doi: 10.3934/dcds.2007.19.493.  Google Scholar

[17]

Y. Fu, Y. Liu and C. Qu, On the blow up structure for the generalized periodic Camassa-Holm and Degasperis-Procesi equations,, J. Funct. Anal., 262 (2012), 3125.  doi: 10.1016/j.jfa.2012.01.009.  Google Scholar

[18]

W. Fu and D. J. Zhang, The Hamiltonian structures of $\mu$-equations related to periodic peakons,, Chin. Phys. Lett., 30 (2013).   Google Scholar

[19]

O. Glass, Controllability and asymptotic stabilization of the Camassa-Holm equation,, J. Diff. Equa., 245 (2008), 1584.  doi: 10.1016/j.jde.2008.06.016.  Google Scholar

[20]

A. Himonas and G. Misiolek, Wellposedness of the Cauchy problem for a shal low water equation on the circle,, J. Diff. Equa., 161 (2000), 479.  doi: 10.1006/jdeq.1999.3695.  Google Scholar

[21]

J. K. Hunter and R. Saxton, Dynamics of director fields,, SIAM J. Appl. Math., 51 (1991), 1498.  doi: 10.1137/0151075.  Google Scholar

[22]

J. K. Hunter and Y. Zheng, On a completely integrable nonlinear hyperbolic variational equation,, Physica D., 79 (1994), 361.  doi: 10.1016/S0167-2789(05)80015-6.  Google Scholar

[23]

B. Khesin, J. Lenells and G. Misiolk, Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms,, Math. Ann., 342 (2008), 617.  doi: 10.1007/s00208-008-0250-3.  Google Scholar

[24]

J. Lenells, Traveling wave solutions of the Camassa-Holm equation,, J. Diff. Equa., 217 (2005), 393.  doi: 10.1016/j.jde.2004.09.007.  Google Scholar

[25]

Y. A. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation,, J. Diff. Equa., 162 (2000), 27.  doi: 10.1006/jdeq.1999.3683.  Google Scholar

[26]

F. Linares and J. Ortega, On the controllability and stabilization of the linearized Benjamin-Ono equation,, ESAIM Control Optim. Calc. Var., 11 (2005), 204.  doi: 10.1051/cocv:2005002.  Google Scholar

[27]

S. Micu, On the controllability of the linearized Benjamin-Bona-Mahony equation,, SIAM J. Control Optim., 39 (2001), 1677.  doi: 10.1137/S0363012999362499.  Google Scholar

[28]

B. Moon and Y. Liu, Wave breaking and global existence for the generalized periodic two-component Hunter-Saxton system,, J. Diff. Equa., 253 (2012), 319.  doi: 10.1016/j.jde.2012.02.011.  Google Scholar

[29]

R. E. Showater, Hilbert Space Methods for Partial Differential Equations,, Pitman, (1977).   Google Scholar

[30]

M. Wunsch, The generalized Hunter-Saxton system,, SIAM J. Math. Anal., 42 (2010), 1286.  doi: 10.1137/090768576.  Google Scholar

[31]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[32]

K. Yan and Z. Yin, On the Cauchy problem for a two-component Degasperis-Procesi system,, J. Diff. Equa., 252 (2012), 2131.  doi: 10.1016/j.jde.2011.08.003.  Google Scholar

[33]

Z. Yin, On the structure of solutions to the periodic Hunter-Saxton equation,, SIAM J. Math. Anal., 36 (2004), 272.  doi: 10.1137/S0036141003425672.  Google Scholar

[34]

Z. Y. Yin and C. Guan, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system,, J. Diff. Equa., 248 (2010), 2003.  doi: 10.1016/j.jde.2009.08.002.  Google Scholar

[35]

S. Yu, The spatially periodic Cauchy problem for a generalized 2-component $\mu$-Camassa-Holm system,, Nonlinear Anal. Real World Appl., 19 (2014), 117.  doi: 10.1016/j.nonrwa.2014.03.006.  Google Scholar

[36]

Y. Zhang, Y. Liu and C. Z. Qu, Blow up of solutions and traveling waves to the two-component $\mu$-Camassa-Holm system,, Int. Math. Res. Not., 15 (2013), 3386.   Google Scholar

[1]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[2]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[3]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[4]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[5]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[6]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[7]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[8]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[9]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[10]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[11]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[12]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[13]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[14]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[15]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[16]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[17]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[18]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[19]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[20]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]