December  2016, 9(6): 2167-2179. doi: 10.3934/dcdss.2016090

Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space

1. 

School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000, Henan

2. 

School of Mathematics and Information Science, Henan Polytechnic University, Henan 454000, China

Received  July 2015 Revised  September 2016 Published  November 2016

In this paper, we investigate the blow-up criteria of smooth solutions and the regularity of weak solutions to the micropolar fluid equations in three dimensions. We obtain that if $ \nabla_{h}u,\nabla_{h}\omega\in L^{1}(0,T;\dot{B}^{0}_{\infty,\infty})$ or $ \nabla_{h}u,\nabla_{h}\omega\in L^{\frac{8}{3}}(0,T;\dot{B}^{-1}_{\infty,\infty})$ then the solution $(u,\omega)$ can be extended smoothly beyond $t=T$.
Citation: Baoquan Yuan, Xiao Li. Blow-up criteria of smooth solutions to the three-dimensional micropolar fluid equations in Besov space. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2167-2179. doi: 10.3934/dcdss.2016090
References:
[1]

L. C. Berselli, On a regularity criterion for the solutions to 3D Navier-Stokes equations,, Differential Integral Equations, 15 (2002), 1129.   Google Scholar

[2]

H. Bahouri, R. Danchin and J. Y. Chemin, Fourier Analysis and Nonlinear Partial Differential Equations,, Springer Heidelberg Dordrecht London New York, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[3]

J. Bergh and J. Löfström, Inerpolation Spaces, an Introduction,, Springer-Verlag, (1976).   Google Scholar

[4]

Q. L. Chen and C. X. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces,, J. Differential Equations, 252 (2012), 2698.  doi: 10.1016/j.jde.2011.09.035.  Google Scholar

[5]

C. S. Cao and J. H. Wu, Two regularity criteria for the 3D MHD equations,, J. Differential Equations, 248 (2010), 2263.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[6]

B. Q. Dong and Z. M. Chen, Regularity criteria of weak solutions to the three-dimensional micropolar flows,, J. Math. Phys., 50 (2009).  doi: 10.1063/1.3245862.  Google Scholar

[7]

B. Q. Dong and W. Zhang, On the regularity criterion for the three-dimensional micropolar flows in Besov spaces,, Nonlinear Anal., 73 (2010), 2334.  doi: 10.1016/j.na.2010.06.029.  Google Scholar

[8]

B. Q. Dong and Z. F. Zhang, The BKM criterion for the 3D Navier-Stokes equations via two velocity components,, Nonlinear Anal., 11 (2010), 2415.  doi: 10.1016/j.nonrwa.2009.07.013.  Google Scholar

[9]

A. C. Eringen, Theory of micropolar fluids,, J. Math. Mech., 16 (1966), 1.   Google Scholar

[10]

D. Y. Fang and C. Y. Qian, Regularity criteria for 3D Navier-Stokes equations in Besov space,, Comm.Pura Appl, 13 (2014), 585.  doi: 10.3934/cpaa.2014.13.585.  Google Scholar

[11]

G. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations,, Int. J. Eng. Sci., 15 (1977), 105.  doi: 10.1016/0020-7225(77)90025-8.  Google Scholar

[12]

S. Gala, On regularity criteria for the three-dimensional micropolar fluid equations in the critical Morrey-Campanato space,, Nonlinear Anal., 12 (2011), 2142.  doi: 10.1016/j.nonrwa.2010.12.028.  Google Scholar

[13]

I. Kukavica and M. Zinae, Navier-Stokes equation with regularity in one direction,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2395919.  Google Scholar

[14]

O. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Fluids,, Gorden Brech, (1969).   Google Scholar

[15]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem,, Chapman & Hill/CRC, (2002).  doi: 10.1201/9781420035674.  Google Scholar

[16]

P. L. Lions and Lions, Mathematical Topics in Fluid Mechanics,, Oxford University Press Inc. New York, (1996).   Google Scholar

[17]

G. Lukaszewicz, Micropolar Fluids,, Birkhäuser, (1999).  doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[18]

G. Lukaszewicz, On nonstationary flows of asymmetric fluids,, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 12 (1988), 83.   Google Scholar

[19]

G. Lukaszewicz, On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids,, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 13 (1989), 105.   Google Scholar

[20]

E. Ortega-Torres and M. Rojas-Medar, On the regularity for solutions of the micropolar fluid equations,, Rend. Semin. Mat. Univ. Padova, 122 (2009), 27.  doi: 10.4171/RSMUP/122-3.  Google Scholar

[21]

M. A. Rojas-Medar and J. L. Boldrini, Magneto-micropolar fluid motion: Existence of weak solutions,, Rev. Mat. Complut., 11 (1998), 443.  doi: 10.5209/rev_REMA.1998.v11.n2.17276.  Google Scholar

[22]

Z. Skalák, Criteria for the regularity of the solutions to the Navier-Stokes equations based on the velocity gradient,, Nonlinear Anal., 118 (2015), 1.  doi: 10.1016/j.na.2015.01.011.  Google Scholar

[23]

Y. X. Wang and H. J. Zhao, Logarithmically improved blow up criterion for smooths solution to the 3D Micropolar Fluid equations,, J. Appl. Math., (2012).  doi: 10.1016/j.nonrwa.2011.12.018.  Google Scholar

[24]

N. Yamaguchi, Existence of global strong solution to the micropolar fluid system in a bounded domain,, Methods Appl. Sci., 28 (2005), 1507.  doi: 10.1002/mma.617.  Google Scholar

[25]

B. Q. Yuan, On regularity criteria of weak solutions to the micropolar fluid equations in Lorentz space,, Amer. Math. Soc., 138 (2010), 2025.  doi: 10.1090/S0002-9939-10-10232-9.  Google Scholar

[26]

B. Q. Yuan, Regularity of weak solutions to magneto-micropolar equations,, Acta Math. Sci., 30 (2010), 1469.  doi: 10.1016/S0252-9602(10)60139-7.  Google Scholar

[27]

H. Zhang, Logarithmically improved regularity criterion for the 3D micropolar fluid equations,, Int. J. Appl. Anal., (2014).  doi: 10.1155/2014/386269.  Google Scholar

[28]

Y. Zhou, A new regularity criteria for weak solutions to the Navier-Stokes equations,, J. Math. Pures Appl., 84 (2005), 1496.  doi: 10.1016/j.matpur.2005.07.003.  Google Scholar

[29]

Y. Zhou and M. Pokorny, On the regularity of the solutions of the Navier-Stokes equations via one velocity component,, Nonlinearity, 23 (2010), 1097.  doi: 10.1088/0951-7715/23/5/004.  Google Scholar

show all references

References:
[1]

L. C. Berselli, On a regularity criterion for the solutions to 3D Navier-Stokes equations,, Differential Integral Equations, 15 (2002), 1129.   Google Scholar

[2]

H. Bahouri, R. Danchin and J. Y. Chemin, Fourier Analysis and Nonlinear Partial Differential Equations,, Springer Heidelberg Dordrecht London New York, (2011).  doi: 10.1007/978-3-642-16830-7.  Google Scholar

[3]

J. Bergh and J. Löfström, Inerpolation Spaces, an Introduction,, Springer-Verlag, (1976).   Google Scholar

[4]

Q. L. Chen and C. X. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces,, J. Differential Equations, 252 (2012), 2698.  doi: 10.1016/j.jde.2011.09.035.  Google Scholar

[5]

C. S. Cao and J. H. Wu, Two regularity criteria for the 3D MHD equations,, J. Differential Equations, 248 (2010), 2263.  doi: 10.1016/j.jde.2009.09.020.  Google Scholar

[6]

B. Q. Dong and Z. M. Chen, Regularity criteria of weak solutions to the three-dimensional micropolar flows,, J. Math. Phys., 50 (2009).  doi: 10.1063/1.3245862.  Google Scholar

[7]

B. Q. Dong and W. Zhang, On the regularity criterion for the three-dimensional micropolar flows in Besov spaces,, Nonlinear Anal., 73 (2010), 2334.  doi: 10.1016/j.na.2010.06.029.  Google Scholar

[8]

B. Q. Dong and Z. F. Zhang, The BKM criterion for the 3D Navier-Stokes equations via two velocity components,, Nonlinear Anal., 11 (2010), 2415.  doi: 10.1016/j.nonrwa.2009.07.013.  Google Scholar

[9]

A. C. Eringen, Theory of micropolar fluids,, J. Math. Mech., 16 (1966), 1.   Google Scholar

[10]

D. Y. Fang and C. Y. Qian, Regularity criteria for 3D Navier-Stokes equations in Besov space,, Comm.Pura Appl, 13 (2014), 585.  doi: 10.3934/cpaa.2014.13.585.  Google Scholar

[11]

G. Galdi and S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations,, Int. J. Eng. Sci., 15 (1977), 105.  doi: 10.1016/0020-7225(77)90025-8.  Google Scholar

[12]

S. Gala, On regularity criteria for the three-dimensional micropolar fluid equations in the critical Morrey-Campanato space,, Nonlinear Anal., 12 (2011), 2142.  doi: 10.1016/j.nonrwa.2010.12.028.  Google Scholar

[13]

I. Kukavica and M. Zinae, Navier-Stokes equation with regularity in one direction,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2395919.  Google Scholar

[14]

O. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Fluids,, Gorden Brech, (1969).   Google Scholar

[15]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem,, Chapman & Hill/CRC, (2002).  doi: 10.1201/9781420035674.  Google Scholar

[16]

P. L. Lions and Lions, Mathematical Topics in Fluid Mechanics,, Oxford University Press Inc. New York, (1996).   Google Scholar

[17]

G. Lukaszewicz, Micropolar Fluids,, Birkhäuser, (1999).  doi: 10.1007/978-1-4612-0641-5.  Google Scholar

[18]

G. Lukaszewicz, On nonstationary flows of asymmetric fluids,, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 12 (1988), 83.   Google Scholar

[19]

G. Lukaszewicz, On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids,, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 13 (1989), 105.   Google Scholar

[20]

E. Ortega-Torres and M. Rojas-Medar, On the regularity for solutions of the micropolar fluid equations,, Rend. Semin. Mat. Univ. Padova, 122 (2009), 27.  doi: 10.4171/RSMUP/122-3.  Google Scholar

[21]

M. A. Rojas-Medar and J. L. Boldrini, Magneto-micropolar fluid motion: Existence of weak solutions,, Rev. Mat. Complut., 11 (1998), 443.  doi: 10.5209/rev_REMA.1998.v11.n2.17276.  Google Scholar

[22]

Z. Skalák, Criteria for the regularity of the solutions to the Navier-Stokes equations based on the velocity gradient,, Nonlinear Anal., 118 (2015), 1.  doi: 10.1016/j.na.2015.01.011.  Google Scholar

[23]

Y. X. Wang and H. J. Zhao, Logarithmically improved blow up criterion for smooths solution to the 3D Micropolar Fluid equations,, J. Appl. Math., (2012).  doi: 10.1016/j.nonrwa.2011.12.018.  Google Scholar

[24]

N. Yamaguchi, Existence of global strong solution to the micropolar fluid system in a bounded domain,, Methods Appl. Sci., 28 (2005), 1507.  doi: 10.1002/mma.617.  Google Scholar

[25]

B. Q. Yuan, On regularity criteria of weak solutions to the micropolar fluid equations in Lorentz space,, Amer. Math. Soc., 138 (2010), 2025.  doi: 10.1090/S0002-9939-10-10232-9.  Google Scholar

[26]

B. Q. Yuan, Regularity of weak solutions to magneto-micropolar equations,, Acta Math. Sci., 30 (2010), 1469.  doi: 10.1016/S0252-9602(10)60139-7.  Google Scholar

[27]

H. Zhang, Logarithmically improved regularity criterion for the 3D micropolar fluid equations,, Int. J. Appl. Anal., (2014).  doi: 10.1155/2014/386269.  Google Scholar

[28]

Y. Zhou, A new regularity criteria for weak solutions to the Navier-Stokes equations,, J. Math. Pures Appl., 84 (2005), 1496.  doi: 10.1016/j.matpur.2005.07.003.  Google Scholar

[29]

Y. Zhou and M. Pokorny, On the regularity of the solutions of the Navier-Stokes equations via one velocity component,, Nonlinearity, 23 (2010), 1097.  doi: 10.1088/0951-7715/23/5/004.  Google Scholar

[1]

Jinbo Geng, Xiaochun Chen, Sadek Gala. On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space. Communications on Pure & Applied Analysis, 2011, 10 (2) : 583-592. doi: 10.3934/cpaa.2011.10.583

[2]

Vural Bayrak, Emil Novruzov, Ibrahim Ozkol. Local-in-space blow-up criteria for two-component nonlinear dispersive wave system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6023-6037. doi: 10.3934/dcds.2019263

[3]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[4]

Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203

[5]

Alejandro Sarria. Global estimates and blow-up criteria for the generalized Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 641-673. doi: 10.3934/dcdsb.2015.20.641

[6]

Jihoon Lee. Scaling invariant blow-up criteria for simplified versions of Ericksen-Leslie system. Discrete & Continuous Dynamical Systems - S, 2015, 8 (2) : 381-388. doi: 10.3934/dcdss.2015.8.381

[7]

Yan Jia, Xingwei Zhang, Bo-Qing Dong. Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Communications on Pure & Applied Analysis, 2013, 12 (2) : 923-937. doi: 10.3934/cpaa.2013.12.923

[8]

Hua Qiu. Regularity criteria of smooth solution to the incompressible viscoelastic flow. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2873-2888. doi: 10.3934/cpaa.2013.12.2873

[9]

Yi-hang Hao, Xian-Gao Liu. The existence and blow-up criterion of liquid crystals system in critical Besov space. Communications on Pure & Applied Analysis, 2014, 13 (1) : 225-236. doi: 10.3934/cpaa.2014.13.225

[10]

Yukihiro Seki. A remark on blow-up at space infinity. Conference Publications, 2009, 2009 (Special) : 691-696. doi: 10.3934/proc.2009.2009.691

[11]

Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881

[12]

Zhifu Xie. General uniqueness results and examples for blow-up solutions of elliptic equations. Conference Publications, 2009, 2009 (Special) : 828-837. doi: 10.3934/proc.2009.2009.828

[13]

Jacek Banasiak. Blow-up of solutions to some coagulation and fragmentation equations with growth. Conference Publications, 2011, 2011 (Special) : 126-134. doi: 10.3934/proc.2011.2011.126

[14]

Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771

[15]

Zhijun Zhang, Ling Mi. Blow-up rates of large solutions for semilinear elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1733-1745. doi: 10.3934/cpaa.2011.10.1733

[16]

Marius Ghergu, Vicenţiu Rădulescu. Nonradial blow-up solutions of sublinear elliptic equations with gradient term. Communications on Pure & Applied Analysis, 2004, 3 (3) : 465-474. doi: 10.3934/cpaa.2004.3.465

[17]

Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54

[18]

Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027

[19]

Jens Lorenz, Wilberclay G. Melo, Natã Firmino Rocha. The Magneto–Hydrodynamic equations: Local theory and blow-up of solutions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3819-3841. doi: 10.3934/dcdsb.2018332

[20]

Yu-Zhu Wang, Weibing Zuo. On the blow-up criterion of smooth solutions for Hall-magnetohydrodynamics system with partial viscosity. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1327-1336. doi: 10.3934/cpaa.2014.13.1327

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]