Citation: |
[1] |
J.-Y. Chemin, About weak-strong uniqueness for the 3D incompressible Navier-Stokes system, Communications in Pure and Applied Mathematics, 64 (2011), 1587-1598.doi: 10.1002/cpa.20386. |
[2] |
J.-Y. Chemin, I. Gallagher and M. Paicu, Global regularity for some classes of large solutions to the Navier-Stokes equations, Annals of Mathematics, 173 (2011), 983-1012.doi: 10.4007/annals.2011.173.2.9. |
[3] |
B. Guo and L. Zhang, Decay of solutions to magnetohydrodynamics equations in two space dimensions, Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 449 (1995), 79-91.doi: 10.1098/rspa.1995.0033. |
[4] |
T. Hou, Z. Lei and C. Li, Global regularity of the three-dimensional axi-symmetric Navier-Stokes equations with anisotropic data, Communications in Partial Differential Equations, 33 (2008), 1622-1637.doi: 10.1080/03605300802108057. |
[5] |
Z. Lei and F. Lin, Global mild solutions of Navier-Stokes equations, Communications in Pure and Applied Mathematics, 64 (2011), 1297-1304.doi: 10.1002/cpa.20361. |
[6] |
Z. Lei, F. Lin and Y. Zhou, Structure of helicity and global solution of incompressible Navier-Stokes equations, Archive for Rational Mechanics and Analysis, 218 (2015), 1417-1430.doi: 10.1007/s00205-015-0884-8. |
[7] |
F. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Communications in Pure and Applied Mathematics, 51 (1998), 241-257.doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A. |
[8] |
W. Peng and Y. Zhou, Global large solutions to incompressible Navier-Stokes equations with gravity, Mathematical Methods in Applied Sciences, 38 (2015), 590-597.doi: 10.1002/mma.3088. |
[9] |
M. E. Schonbek, $L^2$ decay for weak solutions of the nonlinear Navier-Stokes equations, Archive for Rational Mechanics and Analysis, 88 (1985), 209-222.doi: 10.1007/BF00752111. |
[10] |
M. E. Schonbek, Large time behaviour to the Navier-Stokes equations, Communications in Partial Differential Equations, 11 (1986), 733-763.doi: 10.1080/03605308608820443. |
[11] |
R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Second Edition, Applied Mathematical Sciences, Volume 68, Spring-Verlag, New York 1997.doi: 10.1007/978-1-4612-0645-3. |
[12] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Reprint of the 1984 edition. AMS Chelsea Publishing, Providence, Rhode Island, 2001.doi: 10.1090/chel/343. |
[13] |
G. Tian and Z. Xin, Gradient estimation on Navier-Stokes equations, Communications in Analysis and Geometry, 7 (1999), 221-257.doi: 10.4310/CAG.1999.v7.n2.a1. |
[14] |
L. Zhang, Decay of solutions to 2-dimensional Navier-Stokes equations, Chinese Advances in Mathematics, 22 (1993), 469-472. |
[15] |
L. Zhang, Decay estimates for the solutions of some nonlinear evolution equations, Journal of Differential Equations, 116 (1995), 31-58.doi: 10.1006/jdeq.1995.1028. |
[16] |
L. Zhang, Sharp rate of decay of solutions to 2-dimensional Navier-Stokes equations, Communications in Partial Differential Equations, 20 (1995), 119-127.doi: 10.1080/03605309508821089. |