December  2016, 9(6): 2181-2200. doi: 10.3934/dcdss.2016091

Decay estimates with sharp rates of global solutions of nonlinear systems of fluid dynamics equations

1. 

Department of Mathematics, Lehigh University, 14 East Packer Avenue, Bethlehem, Pennsylvania 18015

Received  June 2015 Revised  September 2016 Published  November 2016

Consider the Cauchy problems for the $n$-dimensional incompressible Navier-Stokes equations \begin{eqnarray*} \frac{\partial{\bf u}}{\partial t}-\alpha\triangle{\bf u}+({\bf u}\cdot\nabla){\bf u}+\nabla p={\bf f}({\bf x},t),\qquad {\bf u}({\bf x},0)={\bf u}_0({\bf x}). \end{eqnarray*} In this system, the dimension $n\geq 3$, ${\bf u}({\bf x},t)=(u_1({\bf x},t),u_2({\bf x},t),\cdots,u_n({\bf x},t))$ and ${\bf f}({\bf x},t)=(f_1({\bf x},t),f_2({\bf x},t),\cdots,f_n({\bf x},t))$ are real vector valued functions of ${\bf x}=(x_1,x_2,\cdots,x_n)$ and $t$. Additionally, $\alpha>0$ is a positive constant. Suppose that the initial function and the external force satisfy appropriate conditions.
    The main purpose of this paper is to make complete use of the uniform energy estimates of the global smooth solutions and couple together a well known Gronwall's inequality to improve the Fourier splitting method to accomplish the decay estimates with sharp rates. The decay estimates with sharp rates of the global smooth solutions of the Cauchy problems for the $n$-dimensional magnetohydrodynamics equations may be established very similarly.
Citation: Linghai Zhang. Decay estimates with sharp rates of global solutions of nonlinear systems of fluid dynamics equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2181-2200. doi: 10.3934/dcdss.2016091
References:
[1]

J.-Y. Chemin, About weak-strong uniqueness for the 3D incompressible Navier-Stokes system,, Communications in Pure and Applied Mathematics, 64 (2011), 1587.  doi: 10.1002/cpa.20386.  Google Scholar

[2]

J.-Y. Chemin, I. Gallagher and M. Paicu, Global regularity for some classes of large solutions to the Navier-Stokes equations,, Annals of Mathematics, 173 (2011), 983.  doi: 10.4007/annals.2011.173.2.9.  Google Scholar

[3]

B. Guo and L. Zhang, Decay of solutions to magnetohydrodynamics equations in two space dimensions,, Proceedings of the Royal Society of London, 449 (1995), 79.  doi: 10.1098/rspa.1995.0033.  Google Scholar

[4]

T. Hou, Z. Lei and C. Li, Global regularity of the three-dimensional axi-symmetric Navier-Stokes equations with anisotropic data,, Communications in Partial Differential Equations, 33 (2008), 1622.  doi: 10.1080/03605300802108057.  Google Scholar

[5]

Z. Lei and F. Lin, Global mild solutions of Navier-Stokes equations,, Communications in Pure and Applied Mathematics, 64 (2011), 1297.  doi: 10.1002/cpa.20361.  Google Scholar

[6]

Z. Lei, F. Lin and Y. Zhou, Structure of helicity and global solution of incompressible Navier-Stokes equations,, Archive for Rational Mechanics and Analysis, 218 (2015), 1417.  doi: 10.1007/s00205-015-0884-8.  Google Scholar

[7]

F. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem,, Communications in Pure and Applied Mathematics, 51 (1998), 241.  doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A.  Google Scholar

[8]

W. Peng and Y. Zhou, Global large solutions to incompressible Navier-Stokes equations with gravity,, Mathematical Methods in Applied Sciences, 38 (2015), 590.  doi: 10.1002/mma.3088.  Google Scholar

[9]

M. E. Schonbek, $L^2$ decay for weak solutions of the nonlinear Navier-Stokes equations,, Archive for Rational Mechanics and Analysis, 88 (1985), 209.  doi: 10.1007/BF00752111.  Google Scholar

[10]

M. E. Schonbek, Large time behaviour to the Navier-Stokes equations,, Communications in Partial Differential Equations, 11 (1986), 733.  doi: 10.1080/03605308608820443.  Google Scholar

[11]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, Second Edition, (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[12]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, Reprint of the 1984 edition. AMS Chelsea Publishing, (1984).  doi: 10.1090/chel/343.  Google Scholar

[13]

G. Tian and Z. Xin, Gradient estimation on Navier-Stokes equations,, Communications in Analysis and Geometry, 7 (1999), 221.  doi: 10.4310/CAG.1999.v7.n2.a1.  Google Scholar

[14]

L. Zhang, Decay of solutions to 2-dimensional Navier-Stokes equations,, Chinese Advances in Mathematics, 22 (1993), 469.   Google Scholar

[15]

L. Zhang, Decay estimates for the solutions of some nonlinear evolution equations,, Journal of Differential Equations, 116 (1995), 31.  doi: 10.1006/jdeq.1995.1028.  Google Scholar

[16]

L. Zhang, Sharp rate of decay of solutions to 2-dimensional Navier-Stokes equations,, Communications in Partial Differential Equations, 20 (1995), 119.  doi: 10.1080/03605309508821089.  Google Scholar

show all references

References:
[1]

J.-Y. Chemin, About weak-strong uniqueness for the 3D incompressible Navier-Stokes system,, Communications in Pure and Applied Mathematics, 64 (2011), 1587.  doi: 10.1002/cpa.20386.  Google Scholar

[2]

J.-Y. Chemin, I. Gallagher and M. Paicu, Global regularity for some classes of large solutions to the Navier-Stokes equations,, Annals of Mathematics, 173 (2011), 983.  doi: 10.4007/annals.2011.173.2.9.  Google Scholar

[3]

B. Guo and L. Zhang, Decay of solutions to magnetohydrodynamics equations in two space dimensions,, Proceedings of the Royal Society of London, 449 (1995), 79.  doi: 10.1098/rspa.1995.0033.  Google Scholar

[4]

T. Hou, Z. Lei and C. Li, Global regularity of the three-dimensional axi-symmetric Navier-Stokes equations with anisotropic data,, Communications in Partial Differential Equations, 33 (2008), 1622.  doi: 10.1080/03605300802108057.  Google Scholar

[5]

Z. Lei and F. Lin, Global mild solutions of Navier-Stokes equations,, Communications in Pure and Applied Mathematics, 64 (2011), 1297.  doi: 10.1002/cpa.20361.  Google Scholar

[6]

Z. Lei, F. Lin and Y. Zhou, Structure of helicity and global solution of incompressible Navier-Stokes equations,, Archive for Rational Mechanics and Analysis, 218 (2015), 1417.  doi: 10.1007/s00205-015-0884-8.  Google Scholar

[7]

F. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem,, Communications in Pure and Applied Mathematics, 51 (1998), 241.  doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A.  Google Scholar

[8]

W. Peng and Y. Zhou, Global large solutions to incompressible Navier-Stokes equations with gravity,, Mathematical Methods in Applied Sciences, 38 (2015), 590.  doi: 10.1002/mma.3088.  Google Scholar

[9]

M. E. Schonbek, $L^2$ decay for weak solutions of the nonlinear Navier-Stokes equations,, Archive for Rational Mechanics and Analysis, 88 (1985), 209.  doi: 10.1007/BF00752111.  Google Scholar

[10]

M. E. Schonbek, Large time behaviour to the Navier-Stokes equations,, Communications in Partial Differential Equations, 11 (1986), 733.  doi: 10.1080/03605308608820443.  Google Scholar

[11]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, Second Edition, (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[12]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, Reprint of the 1984 edition. AMS Chelsea Publishing, (1984).  doi: 10.1090/chel/343.  Google Scholar

[13]

G. Tian and Z. Xin, Gradient estimation on Navier-Stokes equations,, Communications in Analysis and Geometry, 7 (1999), 221.  doi: 10.4310/CAG.1999.v7.n2.a1.  Google Scholar

[14]

L. Zhang, Decay of solutions to 2-dimensional Navier-Stokes equations,, Chinese Advances in Mathematics, 22 (1993), 469.   Google Scholar

[15]

L. Zhang, Decay estimates for the solutions of some nonlinear evolution equations,, Journal of Differential Equations, 116 (1995), 31.  doi: 10.1006/jdeq.1995.1028.  Google Scholar

[16]

L. Zhang, Sharp rate of decay of solutions to 2-dimensional Navier-Stokes equations,, Communications in Partial Differential Equations, 20 (1995), 119.  doi: 10.1080/03605309508821089.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[4]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[5]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[6]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[7]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[8]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[9]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[10]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[11]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[12]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[13]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[14]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[15]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[16]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[17]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[18]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[19]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[20]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]